首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94310篇
  免费   7198篇
  国内免费   5966篇
  2024年   128篇
  2023年   1035篇
  2022年   2555篇
  2021年   4668篇
  2020年   3094篇
  2019年   3840篇
  2018年   3825篇
  2017年   2804篇
  2016年   4011篇
  2015年   5952篇
  2014年   6874篇
  2013年   7396篇
  2012年   8724篇
  2011年   7797篇
  2010年   4709篇
  2009年   4293篇
  2008年   4853篇
  2007年   4391篇
  2006年   3876篇
  2005年   3194篇
  2004年   2763篇
  2003年   2302篇
  2002年   1921篇
  2001年   1569篇
  2000年   1489篇
  1999年   1351篇
  1998年   843篇
  1997年   799篇
  1996年   805篇
  1995年   724篇
  1994年   639篇
  1993年   438篇
  1992年   646篇
  1991年   501篇
  1990年   480篇
  1989年   341篇
  1988年   287篇
  1987年   277篇
  1986年   193篇
  1985年   218篇
  1984年   140篇
  1983年   128篇
  1982年   81篇
  1981年   65篇
  1980年   39篇
  1979年   62篇
  1976年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
181.
抗阿特拉津转基因大豆植株后代的遗传分析   总被引:9,自引:0,他引:9  
本试验用阿特拉津溶液涂抹、荧光诱导动力学检测、分子杂交等方法对抗阿特拉津转基因大豆植株的后代进行了鉴定,在第二代及第三代中检测到了抗性基因的存在,表明从龙葵中得到的此抗阿特拉津 psbA 基因不仅能导人大豆叶绿体基因组中获得表达,而且可以遗传到后代。  相似文献   
182.
麦田冠层气孔导度的分层研究   总被引:2,自引:0,他引:2  
小麦灌浆期和乳熟期冠层各层叶片上、下表面的气孔导度之间呈正相关关系;冠层不同层的叶片气孔导度从早到傍晚有平行变化的趋势,数值上存在较大的差异,一般从冠层上到下递减。经分析,这主要与冠层叶片接受的光强自上而下递减有关,且这时所对应的叶片水势自冠层上到下递增的幅度大。测算结果表明,冠层气孔导度白天亦呈明显的日变化,灌浆期的值大于乳熟期的值。  相似文献   
183.
硒蛋白     
硒(Se)已被确认为是一种生物微量元素,它能共价结合到生物大分子、尤其是蛋白质中。硒蛋白是某些细菌、鸟类、哺乳动物(可能也包含植物)的酶系统的基本成份。一、细菌硒蛋白最早被鉴定的细菌硒蛋白是依赖硒的甲酸脱氢酶,该酶催化无氧条件下HCOOH?H_2+CO_2。Pinsent(954)指出,E·Coli甲酸脱氢酶的表达需要硒。Lester和Demoss(1971)则  相似文献   
184.
1968年Krulin等观察到大鼠下丘脑含有抑制生长激素(GH)释放的物质;1973年Braz-eau等确定其是含14个氨基酸的多肽,定名为GH释放抑制激素或生长抑素(SS)。在脊椎动物SS选择性地分布于全身的细胞内,脑、胃肠和胰腺内含量最高,占25%、70%和5%。SS抑制腺垂体分泌GH、促甲状腺素等,可能也抑制神经垂体激素的释放、抑  相似文献   
185.
存在于动物体内的内源性阿片类物质,不仅是阿片肽,还包括非肽类的吗啡样化合物,后者主要是吗啡和可待因,它们可在动物体内自身合成。  相似文献   
186.
In the eggs of the cockroach Blattella germanica, vitellin (Vt) utilization is initiated 4 days postovulation by the proteolytic processing of its three subunits. These reactions yield a specific set of peptides that are consumed by the developing embryo. A yolk proteinase activity, believed central to this processing event, has been investigated. First expressed at day 3 postovulation, just prior to Vt's processing, its specific activity with synthetic substrates increased four-fold to 18-fold through day 6. In addition, a mixing experiment showed that these proteinases(s) can also process Vt's large subunits in vitro. A relationship between Vt processing and proteinase specific activity was also noted with two B. germanica translocation heterozygotes, which displayed differences in the extent of Vt processing. One group of eggs (group A) failed to process any Vt subunit. A second group (B) processed the Mr 102,000 subunit but not the Mr 95,000. A third group (C) processed their Vt normally. Proteinase specific activities in the yolk of translocant's eggs at day 6 mirrored the extent of processing, being highest in group C eggs and effectively absent from the yolk of group A eggs. Eggs defective in Vt processing also contained arrested embryos. It is concluded that the yolk proteinase activity described here participates in Vt processing at day 4 postovulation. Microscopic examination of yolk obtained from eggs of wild type females showed that, as processing began in vivo (day 4), the yolk granules also underwent an abrupt decrease in size from diameters of 15–30 μm to 3–10 μm. Yolk granules of those translocant's eggs that were defective in Vt processing did not undergo this size decrease, suggesting that granule reorganization and Vt proteolysis may be linked functionally.  相似文献   
187.
Forty different chiral molecules were studied by liquid chromatography with a Pirkle-type, (R)-N-(3,5-dinitrobenzoyl) phenylglycine (DNBPG), chiral stationary phase column. The dramatic effect of a small molecular change on chiral recognition was demonstrated using DL-amino acid derivatives. The inductive effect on chiral recognition was also studied using trifluoro-, trichloro-, dichloro-, monochloroacetyl, and acetyl derivatives of four different chiral amines. The study of the enantiomer separation of 11 different crown ethers of 2,2′-binaphthyldiyl showed that the rigidity of the chiral center can be an additional parameter in chiral recognition for the DNBPG phase but not for a β-cyclodextrin bonded chiral phase. It is apparent from this study that steric effects, inductive effects, and molecular rigidity play important roles in chiral recognition with DNBPG chiral stationary phases.  相似文献   
188.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   
189.
Calluses induced fromPterocladia capillacea have been kept in culture for more than three years. They exhibit a fast growth rate, owing to the release of single cells, which in turn develop into new callus. The effect of various media and culture conditions upon growth was investigated. In order to confirm the identity of the callus cells, a 0,45 mg incoculum was grown that yielded 15 g dried callus within six weeks. Polysaccharides from this material (5.5 g) were analysed by13C NMR spectroscopy. This produced a spectrum typical of agar and very similar to the one obtained for agar extracted fromP. capillacea plants. However, the callus agar displayed no gel-forming properties, even after alkali modification.author for correspondence  相似文献   
190.
Basal prostaglandin synthesis by the isolated perfused rat kidney   总被引:1,自引:0,他引:1  
In order to assess the main characteristics of the prostaglandin (PG) biosynthesis by the isolated perfused rat kidney, the urinary and venous outputs of PGE2, PGF2alpha, 6-keto-PGF1alpha and of thromboxane (Tx)B2 were followed during 120 min after an equilibration period of 30 min. Single pass kidneys were perfused with a Krebs-Henseleit solution added with Polygeline at a constant flow rate providing a perfusion pressure about 90 mm Hg. From the beginning of the study, major differences could be observed in the renal biosynthetic rate of the 4 PG studied which were mainly excreted into the venous effluent. During the perfusion, urinary and venous outputs of PGE2, PGF2alpha and of TxB2 remained stable whereas those of 6-keto-PGF1alpha sharply increased and were found inversely related to the glomerular filtration rate (r = -0.95; p n 0.001). Finally, the urinary and venous outputs of each of the four PGs studied were found positively related. It is concluded that the isolated perfused rat kidney is a valuable preparation for studying the biosynthesis of PGs and that, at least in thi model, the urinary excretion of PGs is a good index of their renal synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号