This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes. 相似文献
Research on species richness patterns and the advanced elevational Rapoport rule (ERR) has been widespread in recent years; however, there is a lack of such research for the temperate mountainous regions in northeast Asia. Here, we collected plant species from the Seorak Mountain in northeast Asia through field surveys. The species were divided into 11 groups according to the life‐form types and phytogeography affinities of each species. The ERR was evaluated using Steven''s method and by examining the species richness patterns of each group. The species richness patterns revealed a positive multimodal pattern along the elevation gradient, but phytogeography affinities (increasing trend) and life‐form analysis (unimodal) exhibited different patterns. The elevation gradients (1,350 m for the mean elevation–range relationships), which are affected by the boundary effect and different life forms, did not consistently support the ERR. However, herbs as well as rare, endemic, and red list species showed consistent support for the ERR, which could be attributed to the influence by phytogeography affinities. Therefore, the results from Seorak Mountain showed that the ERR was not consistent for different plant life forms in the same area; however, phytogeography affinities could support and explain ERR. 相似文献
While sulfur dioxide (SO2) has been previously known for its toxicological effects, it is now known to be produced endogenously in mammals from sulfur-containing amino acid l-cysteine. l-cysteine is catalyzed by cysteine dioxygenase (CDO) to l-cysteinesulfinate, which converts to β-sulfinylpyruvate through transamination by aspartate aminotransferase (AAT), and finally spontaneously decomposes to pyruvate and SO2. The present study explored endogenous SO2 production, and AAT and CDO distribution in different rat tissue. SO2 content was highest in stomach, followed by tissues in the right ventricle, left ventricle, cerebral gray matter, pancreas, lung, cerebral white matter, renal medulla, spleen, renal cortex and liver. AAT activity and AAT1 mRNA expression were highest in the left ventricle, while AAT1 protein expression was highest in the right ventricle. AAT2 and CDO mRNA expressions were both highest in liver tissue. AAT2 protein expression was highest in the renal medulla, but CDO protein expression was highest in liver tissue. In all tissues, AAT1 and AAT2 were mainly distributed in the cytoplasm rather than the nucleus. These observed differences among tissues endogenously generating SO2 and associated enzymes are important in implicating the discovery of SO2 as a novel endogenous signaling molecule. 相似文献
Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop
alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator
of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative
splicing, generating proteins – many of which may have regulatory functions. The objective of the present study was to identify
alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert
therapeutic activity in an in vivo model of arthritis. 相似文献
GSP13 encoded by gene yugI is a general stress protein in Bacillus subtilis. The NMR assignments of the protein are essential for its structure determination. 相似文献