全文获取类型
收费全文 | 21787篇 |
免费 | 1868篇 |
国内免费 | 1387篇 |
专业分类
25042篇 |
出版年
2024年 | 51篇 |
2023年 | 231篇 |
2022年 | 574篇 |
2021年 | 850篇 |
2020年 | 620篇 |
2019年 | 783篇 |
2018年 | 835篇 |
2017年 | 627篇 |
2016年 | 929篇 |
2015年 | 1401篇 |
2014年 | 1626篇 |
2013年 | 1704篇 |
2012年 | 2010篇 |
2011年 | 1927篇 |
2010年 | 1143篇 |
2009年 | 1091篇 |
2008年 | 1256篇 |
2007年 | 1148篇 |
2006年 | 1041篇 |
2005年 | 883篇 |
2004年 | 860篇 |
2003年 | 687篇 |
2002年 | 550篇 |
2001年 | 361篇 |
2000年 | 289篇 |
1999年 | 257篇 |
1998年 | 193篇 |
1997年 | 152篇 |
1996年 | 149篇 |
1995年 | 117篇 |
1994年 | 110篇 |
1993年 | 63篇 |
1992年 | 88篇 |
1991年 | 72篇 |
1990年 | 80篇 |
1989年 | 62篇 |
1988年 | 44篇 |
1987年 | 45篇 |
1986年 | 27篇 |
1985年 | 27篇 |
1984年 | 33篇 |
1983年 | 14篇 |
1982年 | 10篇 |
1981年 | 7篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1976年 | 2篇 |
1967年 | 2篇 |
1964年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
951.
Expression of nerve growth factor (NGF), and its receptors TrkA and p75 in the reproductive organs of the adult male rats 总被引:4,自引:0,他引:4
Li C Watanabe G Weng Q Jin W Furuta C Suzuki AK Kawaguchi M Taya K 《Zoological science》2005,22(8):933-937
Immunolocalization of nerve growth factor (NGF) and its receptors, TrkA and p75 in the reproductive organs of adult male rats was investigated. Sections of the testis, efferent duct, epididymis, deferent duct, seminal vesicle, coagulating gland and prostate of adult male rats were immunostained by the avidin-biotin-peroxidase complex methods (ABC). NGF was expressed in Leydig cells, primary spermatocytes and pachytene spermatocytes in the testis. TrkA only immunoreacted to elongate spermatids and p75 showed positive immunostaining in the Sertoli cells, Leydig cells, the pachytene spermatocytes and elongate spermatids. Immunoreactions for NGF and its two receptors were detected in epithelial cells of efferent duct, deferent duct and epididymis. In addition, immunoreactions for NGF and its two receptors were also observed in columnar secretory epithelium lines of the seminal vesicles, prostate and coagulating gland. These results suggest that NGF is an important growth factor in gonadal function of adult male rats. 相似文献
952.
Amino acids modulate the hypotensive effect of angiotensin-(1-7) at the caudal ventrolateral medulla in rats 总被引:2,自引:0,他引:2
The present experiment was designed to investigate the possible involvement of glutamate and taurine in the depressor response produced by angiotensin (Ang)-(1-7) at the caudal ventrolateral medulla (CVLM) in rats anesthetized with urethane and alpha-chloralose. Microinjection of Ang-(1-7) into the CVLM elicited a depressor response which was partially blocked by nonselective glutamate receptors antagonist kynurenic acid, whereas selective Ang-(1-7) antagonist Ang779 produced a pressor response which was significantly attenuated by taurine receptors antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide. Release of glutamate and taurine in the CVLM was evaluated with microdialysis, and the contents of these amino acids were measured with high performance liquid chromatography-fluorescent detection. The depressor response to Ang-(1-7) was accompanied by an increased release of glutamate and a decrease of taurine at the CVLM, whereas the pressor response to Ang779 was associated with a decreased release of glutamate and an increase of taurine. These results suggest that Ang-(1-7) and its antagonist Ang779 modulate the release of glutamate and taurine at the CVLM, which in turn contributes at least in part to the blood pressure response to Ang-(1-7) and Ang779. 相似文献
953.
Requirement of Cysteines and Length of the Human Respiratory Syncytial Virus M2-1 Protein for Protein Function and Virus Viability 总被引:1,自引:0,他引:1 下载免费PDF全文
The M2-1 protein of human respiratory syncytial virus (hRSV) promotes processive RNA synthesis and readthrough at RSV gene junctions. It contains four highly conserved cysteines, three of which are located in the Cys(3)-His(1) motif at the N terminus of M2-1. Each of the four cysteines, at positions 7, 15, 21, and 96, in the M2-1 protein of hRSV A2 strain was individually replaced by glycines. When tested in an RSV minigenome replicon system using beta-galactosidase as a reporter gene, C7G, C15G, and C21G located in the Cys(3)-His(1) motif showed a significant reduction in processive RNA synthesis compared to wild-type (wt) M2-1. C96G, which lies outside the Cys(3)-His(1) motif, was fully functional in supporting processive RNA synthesis in vitro. Each of these cysteine substitutions was introduced into an infectious antigenomic cDNA clone derived from hRSV A2 strain. Except for C96G, which resulted in a viable virus, no viruses were recovered with mutations in the Cys(3)-His(1) motif. This indicates that the Cys(3)-His(1) motif is critical for M2-1 function and for RSV replication. The functional requirement of the C terminus of the M2-1 protein was examined by engineering premature stop codons that caused truncations of 17, 46, or 67 amino acids from the C terminus. A deletion of 46 or 67 amino acids abolished the synthesis of full-length beta-galactosidase mRNA and did not result in the recovery of viable viruses. However, a deletion of 17 amino acids from the C terminus of M2-1 reduced processive RNA synthesis in vitro and was well tolerated by RSV. Relocation of the M2-1 termination codon upstream of the M2-2 initiation codons did not significantly affect the expression of the M2-2 protein. Both rA2-Tr17 and rA2-C96G did not replicate as efficiently as wt rA2 in HEp-2 cells and was restricted in replication in the respiratory tracts of cotton rats. 相似文献
954.
955.
De-Xiang Zhuo Xiao-Wei Zhang Bo Jin Zheng Zhang Bu-Shan Xie Cheng-Lin Wu Kan Gong Ze-Bin Mao 《PloS one》2013,8(6)
Akt/protein kinase B is a pivotal component downstream of phosphatidylinositol 3-kinase (PI3K) pathway, whose activity regulates the balance between cell survival and apoptosis. Phosphorylation of Akt occurs at two key sites either at Thr308 site in the activation loop or at Ser473 site in the hydrophobic motif. The phosphorylated form of Akt (pAkt) is activated to promote cell survival. The mechanisms of pAkt dephosphorylation and how the signal transduction of Akt pathway is terminated are still largely unknown. In this study, we identified a novel protein phosphatase CSTP1(complete s transactivated protein 1), which interacts and dephosphorylates Akt specifically at Ser473 site in vivo and in vitro, blocks cell cycle progression and promotes cell apoptosis. The effects of CSTP1 on cell survival and cell cycle were abrogated by depletion of phosphatase domain of CSTP1 or by expression of a constitutively active form of Akt (S473D), suggesting Ser473 site of Akt as a primary cellular target of CSTP1. Expression profile analysis showed that CSTP1 expression is selectively down-regulated in non-invasive bladder cancer tissues and over-expression of CSTP1 suppressed the size of tumors in nude mice. Kaplan-Meier curves revealed that decreased expression of CSTP1 implicated significantly reduced recurrence-free survival in patients suffered from non-invasive bladder cancers. 相似文献
956.
Jong-Seok Kim Woo Sik Kim Keehoon Lee Choul-Jae Won Jin Man Kim Seok-Yong Eum Won-Jung Koh Sung Jae Shin 《PloS one》2013,8(3)
Two closely related bacterial species, Segniliparus rotundus and Segniliparus rugosus, have emerged as important human pathogens, but little is known about the immune responses they elicit or their comparative pathophysiologies. To determine the virulence and immune responses of the two species, we compared their abilities to grow in phagocytic and non-phagocytic cells. Both species maintained non-replicating states within A549 epithelial cells. S. rugosus persisted longer and multiplied more rapidly inside murine bone marrow-derived macrophages (BMDMs), induced more pro-inflammatory cytokines, and induced higher levels of macrophage necrosis. Activation of BMDMs by both species was mediated by toll-like receptor 2 (TLR2), followed by mitogen-activated protein kinases (MAPK) and nuclear factor κB (NF-κB) signaling pathways, indicating a critical role for TLR2 in Segniliparus-induced macrophage activation. S. rugosus triggered faster and stronger activation of MAPK signaling and IκB degradation, indicating that S. rugosus induces more pro-inflammatory cytokines than S. rotundus. Multifocal granulomatous inflammations in the liver and lung were observed in mice infected with S. rugosus, but S. rotundus was rapidly cleared from all organs tested within 15 days post-infection. Furthermore, S. rugosus induced faster infiltration of innate immune cells such as neutrophils and macrophages to the lung than S. rotundus. Our results suggest that S. rugosus is more virulent and induces a stronger immune response than S. rotundus. 相似文献
957.
Jing Jin Yuxiang Zheng William E. Boeglin Alan R. Brash 《Journal of lipid research》2013,54(3):754-761
Leukotriene (LT)A4 and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA4 is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A4. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA4 and converts 5R-HPETE to the cis epoxide 5-epi-LTA4, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations. 相似文献
958.
Megan K. L. MacLeod Alexandria David Niyun Jin Laura Noges Jieru Wang John W. Kappler Philippa Marrack 《PloS one》2013,8(4)
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes. 相似文献
959.
Qilu Ye Yedan Feng Yanxia Yin Frédérick Faucher Mark A. Currie Mona N. Rahman Jin Jin Shanze Li Qun Wei Zongchao Jia 《Cellular signalling》2013,25(12):2661-2667
Calcineurin is the only known calmodulin (CaM) activated protein phosphatase, which is involved in the regulation of numerous cellular and developmental processes and in calcium-dependent signal transduction. Although commonly assumed that CaM displaces the autoinhibitory domain (AID) blocking substrate access to its active site, the structural basis underlying activation remains elusive. We have created a fused ternary complex (CBA) by covalently linking three polypeptides: CaM, calcineurin regulatory B subunit (CnB) and calcineurin catalytic A subunit (CnA). CBA catalytic activity is comparable to that of fully activated native calcineurin in the presence of CaM. The crystal structure showed virtually no structural change in the active site and no evidence of CaM despite being covalently linked. The asymmetric unit contains four molecules; two parallel CBA pairs are packed in an antiparallel mode and the large cavities in crystal packing near the calcineurin active site would easily accommodate multiple positions of AID-bound CaM. Intriguingly, the conformation of the ordered segment of AID is not altered by CaM; thus, it is the disordered part of AID, which resumes a regular α-helical conformation upon binding to CaM, which is displaced by CaM for activation. We propose that the structural basis of calcineurin activation by CaM is through displacement of the disordered fragment of AID which otherwise impedes active site access. 相似文献
960.