首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67168篇
  免费   18313篇
  国内免费   2999篇
  88480篇
  2024年   111篇
  2023年   527篇
  2022年   1339篇
  2021年   2353篇
  2020年   3342篇
  2019年   5218篇
  2018年   5311篇
  2017年   5201篇
  2016年   5755篇
  2015年   6410篇
  2014年   6692篇
  2013年   7360篇
  2012年   5543篇
  2011年   5011篇
  2010年   5067篇
  2009年   3699篇
  2008年   2988篇
  2007年   2303篇
  2006年   2039篇
  2005年   1829篇
  2004年   1673篇
  2003年   1441篇
  2002年   1184篇
  2001年   970篇
  2000年   812篇
  1999年   706篇
  1998年   420篇
  1997年   326篇
  1996年   316篇
  1995年   270篇
  1994年   257篇
  1993年   183篇
  1992年   236篇
  1991年   230篇
  1990年   174篇
  1989年   163篇
  1988年   116篇
  1987年   112篇
  1986年   84篇
  1985年   87篇
  1984年   96篇
  1983年   65篇
  1982年   42篇
  1981年   23篇
  1979年   30篇
  1976年   24篇
  1975年   20篇
  1974年   26篇
  1973年   29篇
  1972年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
22.
23.
24.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
25.
A new species, Galearis huanglongensis Q.W.Meng & Y.B.Luo, is described and illustrated. It is similar to Galearis cyclochila (Franch. & Sav.) Soó and Galearis diantha (Schltr.) P.F.Hunt, but differs in having a short spur, two elliptical lateral stigma lobes and distinctly separated bursicles. This new species is known only from the type locality, the Huanglong Valley, Songpan County, western Sichuan, China, growing amongst mosses under alpine shrubs at an elevation of about 3000 m. Based on two years of observations of its population size, the species was categorized as critically endangered CR (B1a, B2a) according to the World Conservation Union (IUCN) Red List Categories and Criteria, Version 3.1. The micromorphology of pollinia and seeds was observed by scanning electron microscopy and compared with that of G. cyclochila and G. diantha. The results supported G. huanglongensis Q.W.Meng & Y.B.Luo as a new species. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 689–695.  相似文献   
26.
27.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   
28.
Abstract. Objectives: The ADAMs (a disintegrin and metalloproteinase) enzymes compose a family of membrane‐bound proteins characterized by their multi‐domain structure and ADAM‐12 expression is elevated in human non‐small cell lung cancers. The aim of this study was to investigate the roles played by ADAM‐12 in critical steps of bronchial cell transformation during carcinogenesis. Materials and methods: To assess the role of ADAM‐12 in tumorigenicity, BEAS‐2B cells were transfected with a plasmid encoding human full‐length ADAM‐12 cDNA, and then the effects of ADAM‐12 overexpression on cell behaviour were explored. Treatment of clones with heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) neutralizing antibodies as well as an EGFR inhibitor allowed the dissection of mechanisms regulating cell proliferation and apoptosis. Results: Overexpression of ADAM‐12 in BEAS‐2B cells promoted cell proliferation. ADAM‐12 overexpressing clones produced higher quantities of HB‐EGF in their culture medium which may rely on membrane‐bound HB‐EGF shedding by ADAM‐12. Targeting HB‐EGF activity with a neutralizing antibody abrogated enhanced cell proliferation in the ADAM‐12 overexpressing clones. In sharp contrast, targeting of amphiregulin, EGF or transforming growth factor‐α failed to influence cell proliferation; moreover, ADAM‐12 transfectants were resistant to etoposide‐induced apoptosis and the use of a neutralizing antibody against HB‐EGF activity restored rates of apoptosis to be similar to controls.Conclusions: ADAM‐12 contributes to enhancing HB‐EGF shedding from plasma membranes leading to increased cell proliferation and reduced apoptosis in this bronchial epithelial cell line.  相似文献   
29.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
30.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号