首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   75篇
  2023年   4篇
  2022年   11篇
  2021年   35篇
  2020年   11篇
  2019年   11篇
  2018年   18篇
  2017年   10篇
  2016年   25篇
  2015年   50篇
  2014年   46篇
  2013年   69篇
  2012年   90篇
  2011年   100篇
  2010年   47篇
  2009年   40篇
  2008年   60篇
  2007年   85篇
  2006年   73篇
  2005年   48篇
  2004年   49篇
  2003年   33篇
  2002年   35篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1972年   1篇
  1970年   1篇
  1968年   3篇
  1949年   1篇
排序方式: 共有1020条查询结果,搜索用时 281 毫秒
131.
Tandem mass spectrometry (MS/MS) is frequently used in the identification of peptides and proteins. Typical proteomic experiments rely on algorithms such as SEQUEST and MASCOT to compare thousands of tandem mass spectra against the theoretical fragment ion spectra of peptides in a database. The probabilities that these spectrum-to-sequence assignments are correct can be determined by statistical software such as PeptideProphet or through estimations based on reverse or decoy databases. However, many of the software applications that assign probabilities for MS/MS spectra to sequence matches were developed using training data sets from 3D ion-trap mass spectrometers. Given the variety of types of mass spectrometers that have become commercially available over the last 5 years, we sought to generate a data set of reference data covering multiple instrumentation platforms to facilitate both the refinement of existing computational approaches and the development of novel software tools. We analyzed the proteolytic peptides in a mixture of tryptic digests of 18 proteins, named the "ISB standard protein mix", using 8 different mass spectrometers. These include linear and 3D ion traps, two quadrupole time-of-flight platforms (qq-TOF), and two MALDI-TOF-TOF platforms. The resulting data set, which has been named the Standard Protein Mix Database, consists of over 1.1 million spectra in 150+ replicate runs on the mass spectrometers. The data were inspected for quality of separation and searched using SEQUEST. All data, including the native raw instrument and mzXML formats and the PeptideProphet validated peptide assignments, are available at http://regis-web.systemsbiology.net/PublicDatasets/.  相似文献   
132.
Purple acid phosphatases (PAP) are a group of dimetallic phosphohydrolase first identified in eukaryotes. Bioinformatics analysis revealed 57 prokaryotic PAP-like sequences in the genomes of 43 bacteria and 4 cyanobacteria species. A putative PAP gene (BcPAP) from the bacteria Burkholderia cenocepacia J2315 was chosen for further studies. Synteny analysis showed that this gene is present as an independent gene in most of the members of the genus Burkholderia. The predicted 561 a.a. polypeptide of BcPAP was found to harbour all the conserved motifs of the eukaryotic PAPs and an N-terminal twin-arginine translocation signal. Expression and biochemical characterization of BcPAP in Escherichia coli revealed that this enzyme has a relatively narrow substrate spectrum, preferably towards phosphotyrosine, phosphoserine and phosphoenolpyruvate. Interestingly, this enzyme was found to have a pH optimum at 8.5, rather than an acidic optima exhibited by eukaryotic PAPs. BcPAP contains a dimetallic ion centre composed of Fe and Zn, and site-directed mutagenesis confirmed that BcPAP utilizes the invariant residues for metal-ligation and catalysis. The enzyme is secreted by the wild type bacteria and its expression is regulated by the availability of orthophosphate. Our findings suggest that not all members in the PAP family have acidic pH optimum and broad substrate specificity.  相似文献   
133.
The availability of the human genome sequence and progress in sequencing and bioinformatic technologies have enabled genome-wide investigation of somatic mutations in human cancers. This article briefly reviews challenges arising in the statistical analysis of mutational data of this kind. A first challenge is that of designing studies that efficiently allocate sequencing resources. We show that this can be addressed by two-stage designs and demonstrate via simulations that even relatively small studies can produce lists of candidate cancer genes that are highly informative for future research efforts. A second challenge is to distinguish mutated genes that are selected for by cancer (drivers) from mutated genes that have no role in the development of cancer and simply happened to mutate (passengers). We suggest that this question is best approached as a classification problem and discuss some of the difficulties of more traditional testing-based approaches. A third challenge is to identify biologic processes affected by the driver genes. This can be pursued by gene set analyses. These can reliably identify functional groups and pathways that are enriched for mutated genes even when the individual genes involved in those pathways or sets are not mutated at sufficient frequencies to provide conclusive evidence as drivers.  相似文献   
134.
Plasmodium falciparum NDH2 (pfNDH2) is a non-proton pumping, rotenone-insensitive alternative enzyme to the multi-subunit NADH:ubiquinone oxidoreductases (Complex I) of many other eukaryotes. Recombinantly expressed pfNDH2 prefers coenzyme CoQ0 as an acceptor substrate, and can also use the artificial electron acceptors, menadione and dichlorophenol–indophenol (DCIP). Previously characterized NDH2 inhibitors, dibenziodolium chloride (DPI), diphenyliodonium chloride (IDP), and 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) do not inhibit pfNDH2 activity. Here, we provide evidence that HDQ likely targets another P. falciparum mitochondrial enzyme, dihydroorotate dehydrogenase (pfDHOD), which is essential for de novo pyrimidine biosynthesis.  相似文献   
135.
Kovács K  Kuzmann E  Tatár E  Vértes A  Fodor F 《Planta》2009,229(2):271-278
Distinct chemical species of iron were investigated by Mössbauer spectroscopy during iron uptake into cucumber roots grown in unbuffered nutrient solution with or without 57Fe-citrate. Mössbauer spectra of iron deficient roots supplied with 10–500 μM 57Fe-citrate for 30–180 min and 24 h and iron-sufficient ones, were recorded. The roots were analysed for Fe concentration and Fe reductase activity. The Mössbauer parameters in the case of iron-sufficient roots revealed high-spin iron(III) components suggesting the presence of FeIII-carboxylate complexes, hydrous ferric oxides and sulfate–hydroxide containing species. No FeII was detected in these roots. However, iron-deficient roots supplied with 0.5 mM 57FeIII-citrate for 30 min contained significant amount of FeII in a hexaaqua complex form. This is a direct evidence for the Strategy I iron uptake mechanism. Correlation was found between the decrease in Fe reductase activity and the ratio of FeII–FeIII components as the time of iron supply was increased. The data may refer to a higher iron reduction rate as compared to its uptake/reoxidation in the cytoplasm in accordance with the increased reduction rate in iron deficient Strategy I plants.  相似文献   
136.
The HA2 glycopolypeptide (gp) is highly conserved in all influenza A virus strains, and it is known to play a major role in the fusion of the virus with the endosomal membrane in host cells during the course of viral infection. Vaccines and therapeutics targeting this HA2 gp could induce efficient broad-spectrum immunity against influenza A virus infections. So far, there have been no studies on the possible therapeutic effects of monoclonal antibodies (MAbs), specifically against the fusion peptide of hemagglutinin (HA), upon lethal infections with highly pathogenic avian influenza (HPAI) H5N1 virus. We have identified MAb 1C9, which binds to GLFGAIAGF, a part of the fusion peptide of the HA2 gp. We evaluated the efficacy of MAb 1C9 as a therapy for influenza A virus infections. This MAb, which inhibited cell fusion in vitro when administered passively, protected 100% of mice from challenge with five 50% mouse lethal doses of HPAI H5N1 influenza A viruses from two different clades. Furthermore, it caused earlier clearance of the virus from the lung. The influenza virus load was assessed in lung samples from mice challenged after pretreatment with MAb 1C9 (24 h prior to challenge) and from mice receiving early treatment (24 h after challenge). The study shows that MAb 1C9, which is specific to the antigenically conserved fusion peptide of HA2, can contribute to the cross-clade protection of mice infected with H5N1 virus and mediate more effective recovery from infection.Highly pathogenic avian influenza (HPAI) virus H5N1 strains are currently causing major morbidity and mortality in poultry populations across Asia, Europe, and Africa and have caused 385 confirmed human infections, with a fatality rate of 63.11% (37, 39). Preventive and therapeutic measures against circulating H5N1 strains have received a lot of interest and effort globally to prevent another pandemic outbreak. Influenza A virus poses a challenge because it rapidly alters its appearance to the immune system by antigenic drift (mutating) and antigenic shift (exchanging its components) (5). The current strategies to combat influenza include vaccination and antiviral drug treatment, with vaccination being the preferred option. The annual influenza vaccine aims to stimulate the generation of anti-hemagglutinin (anti-HA) neutralizing antibodies, which confer protection against homologous strains. Current vaccines have met with various degrees of success (31). The facts that these strategies target the highly variable HA determinant and that predicting the major HA types that pose the next epidemic threat is difficult are significant limitations to the current antiviral strategy. In the absence of an effective vaccine, therapy is the mainstay of control of influenza virus infection.Therefore, therapeutic measures against influenza will play a major role in case a pandemic arises due to H5N1 strains. Currently licensed antiviral drugs include the M2 ion-channel inhibitors (rimantidine and amantidine) and the neuraminidase inhibitors (oseltamivir and zanamivir). The H5N1 viruses are known to be resistant to the M2 ion-channel inhibitors (2, 3). Newer strains of H5N1 viruses are being isolated which are also resistant to the neuraminidase inhibitors (oseltamivir and zanamivir) (5, 17). The neuraminidase inhibitors also require high doses and prolonged treatment (5, 40), increasing the likelihood of unwanted side effects. Hence, alternative strategies for treatment of influenza are warranted.Recently, passive immunotherapy using monoclonal antibodies (MAbs) has been viewed as a viable option for treatment (26). The HA gene is the most variable gene of the influenza virus and also the most promising target for generating antibodies. It is synthesized as a precursor polypeptide, HA0, which is posttranslationally cleaved to two polypeptides, HA1 and HA2, linked by a disulfide bond. MAbs against the HA1 glycopolypeptide (gp) are known to neutralize the infectivity of the virus and hence provide good protection against infection (12). However, they are less efficient against heterologous or mutant strains, which are continuously arising due to antigenic shift and, to an extent, drift. Recent strategies for alternative therapy explore the more conserved epitopes of the influenza virus antigens (18, 33), which not only have the potential to stimulate a protective immune response but are also conserved among different subtypes, so as to offer protection against a broader range of viruses.The HA2 polypeptide represents a highly conserved region of HA across influenza A virus strains. The HA2 gp is responsible for the fusion of the virus and the host endosomal membrane during the entry of the virus into the cell (16). Previously, anti-HA MAbs that lacked HA inhibition activity were studied and were found to reduce the infectivity of non-H5 influenza virus subtypes by inhibition of fusion during viral replication (14). They are known to block fusion of the virus to the cell membrane at the postbinding and prefusion stage, thereby inhibiting viral replication. Furthermore, in vivo studies show that anti-HA2 MAbs that exhibit fusion inhibition activity contribute to protection and recovery from H3N2 influenza A virus infection (8). It is interesting that although the HA2 gp is generally conserved, the fusion peptide represents the most conserved region of the HA protein. So far, there have been no studies on the possible therapeutic effects of MAbs, specifically against the fusion peptide of HA, on lethal HPAI H5N1 infections.Previous studies have suggested that HA2 could contain a potential epitope responsible for the induction of antibody-mediated protective immunity (9). In the present study, a panel of MAbs against HA2 gp was characterized for their respective epitopes by epitope mapping. The therapeutic and prophylactic efficacies of these MAbs were evaluated in mice challenged with HPAI H5N1 virus infection.  相似文献   
137.
A higher-level taxonomy for hummingbirds   总被引:1,自引:0,他引:1  
In the context of a recently published phylogenetic estimate for 151 hummingbird species, we provide an expanded informal taxonomy, as well as a formal phylogenetic taxonomy for Trochilidae that follows the precepts of the PhyloCode, but remains consistent with the hierarchical nomenclature of the Linnaean system. We compare the recently published phylogenetic hypothesis with those of prior higher-level and more taxonomically circumscribed phylogenetic studies. We recommend the recognition of nine new clade names under the PhyloCode, eight of which are consistent with tribes and one with a subfamily under the Linnaean system.  相似文献   
138.
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.Fanconi anemia (FA)3 is a genetic disorder characterized by chromosome instability, predisposition to cancer, hypersensitivity to DNA cross-linking agents, developmental abnormalities, and bone marrow failure (19). There are at least 13 distinct FA complementation groups, each of which is associated with an identified gene (2, 9, 10). Eight of them are components of the FA core complex (FANC A, B, C, E, F, G, L, and M) that is epistatic to the monoubiquitination of both FANCI and FANCD2, a key event to initiate interstrand cross-link (ICL) repair (2, 9, 11). Downstream of or parallel to the FANCI and FANCD2 monoubiquitination are the proteins involved in double strand break repair and breast cancer susceptibility (i.e. FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2) (2, 9).FANCI is the most recently identified FA gene (1113). FANCI protein is believed to form a FANCI-FANCD2 (ID) complex with FANCD2, because they co-immunoprecipitate with each other from cell lysates and their stabilities are interdependent of each other (9, 11, 13). FANCI and FANCD2 are paralogs to each other, since they share sequence homology and co-evolve in the same species (11). Both FANCI and FANCD2 can be phosphorylated by ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases under genotoxic stress (11, 14, 15). The phosphorylation of FANCI seems to function as a molecular switch to turn on the FA repair pathway (16). The monoubiquitination of FANCD2 at lysine 561 plays a critical role in cellular resistance to DNA cross-linking agents and is required for FANCD2 to form damage-induced foci with BRCA1, BRCA2, RAD51, FANCJ, FANCN, and γ-H2AX on chromatin during S phase of the cell cycle (1725). In response to DNA damage or replication stress, FANCI is also monoubiquitinated at lysine 523 and recruited to the DNA repair nuclear foci (11, 13). The monoubiquitination of both FANCI and FANCD2 depends on the FA core complex (11, 13, 26), and the ubiquitination of FANCI relies on the FANCD2 monoubiquitination (2, 11). In an in vitro minimally reconstituted system, FANCI enhances FANCD2 monoubiquitination and increases its specificity toward the in vivo ubiquitination site (27).FANCI is a leucine-rich peptide (14.8% of leucine residues) with limited sequence information to indicate which processes it might be involved in. Besides the monoubiquitination site Lys523 and the putative nuclear localization signals (Fig. 1A), FANCI contains both ARM (armadillo) repeats and a conserved C-terminal EDGE motif as FANCD2 does (11, 28). The EDGE sequence in FANCD2 is not required for monoubiquitination but is required for mitomycin C (MMC) sensitivity (28). The ARM repeats form α-α superhelix folds and are involved in mediating protein-protein interactions (11, 29). In addition, FANCI, at its N terminus, contains a leucine zipper domain (aa 130–151) that could be involved in mediating protein-protein or protein-DNA interactions (Fig. 1A) (3033). FANCD2, the paralog of FANCI, was reported to bind to double strand DNA ends and Holliday junctions (34).Open in a separate windowFIGURE 1.Purified human FANCI binds to DNA promiscuously. A, schematic diagram of predicted FANCI motifs and mutagenesis strategy to define the DNA binding domain. The ranges of numbers indicate how FANCI was truncated (e.g. 801–1328 represents FANCI-(801–1328)). NLS, predicted nuclear localization signal (aa 779–795 and 1323–1328); K523, lysine 523, the monoubiquitination site. The leucine zipper (orange bars, aa 130–151), ARM repeats (green bars), and EDGE motif (blue bars) are indicated. Red bars with a slash indicate the point mutations shown on the left. B, SDS-PAGE of the purified proteins stained with Coomassie Brilliant Blue R-250. R1285Q and D1301A are two point mutants of FANCI. All FANCI variants are tagged by hexahistidine. FANCD2 is in its native form. Protein markers in kilodaltons are indicated. C, titration of WT-FANCI for the DNA binding activity. Diagrams of the DNA substrates are shown at the top of each set of reactions. *, 32P-labeled 5′-end. HJ, Holliday junction. Concentrations of FANCI were 0, 20, 40, 60, and 80 nm (ascending triangles). The substrate concentration was 1 nm. Protein-DNA complex is indicated by an arrow. D, supershift assay. 1 nm of ssDNA was incubated with PBS (lane 1), 80 nm FANCI alone (lane 2), and 80 nm FANCI preincubated with a specific FANCI antibody (lane 3) in the condition described under “Experimental Procedures.”In order to delineate the function of FANCI protein, we purified the recombinant FANCI from the baculovirus expression system. In this study, we report the DNA binding activity of FANCI. Unlike FANCD2, FANCI binds to different DNA structures, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), 5′-tailed, 3′-tailed, splayed arm, 5′-flap, 3′-flap, static fork, and Holliday junction with preference toward branched structures in the presence of FANCD2. Our data suggest that the dynamic DNA binding activity of FANCI and the preferential recognition of branched structures by the ID complex are likely to be the mechanisms to initiate downstream repair events.  相似文献   
139.
140.
As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号