首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10150篇
  免费   812篇
  国内免费   6篇
  2023年   63篇
  2022年   113篇
  2021年   206篇
  2020年   99篇
  2019年   111篇
  2018年   188篇
  2017年   177篇
  2016年   260篇
  2015年   390篇
  2014年   445篇
  2013年   563篇
  2012年   751篇
  2011年   640篇
  2010年   438篇
  2009年   373篇
  2008年   562篇
  2007年   571篇
  2006年   490篇
  2005年   465篇
  2004年   466篇
  2003年   407篇
  2002年   385篇
  2001年   282篇
  2000年   268篇
  1999年   208篇
  1998年   114篇
  1997年   76篇
  1996年   77篇
  1995年   64篇
  1994年   71篇
  1993年   54篇
  1992年   132篇
  1991年   120篇
  1990年   113篇
  1989年   113篇
  1988年   90篇
  1987年   78篇
  1986年   91篇
  1985年   91篇
  1984年   73篇
  1983年   66篇
  1982年   50篇
  1981年   43篇
  1980年   47篇
  1979年   60篇
  1978年   54篇
  1977年   42篇
  1976年   50篇
  1974年   39篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
An NAD+-linked, reduced glutathione-dependent formaldehyde dehydrogenase was purified to homogeneity from soluble extracts of methanol-grown yeast, Pichia sp. Formaldehyde and methylglyoxal are oxidized in the presence of NAD+ as an electron acceptor. NADP+ could not replace NAD+. Other straight chain aldehydes (C2–C6 tested), branched-chain aldehydes (e.g., isobutyaldehyde), aromatic aldehydes (e.g., salicylal-dehyde, benzaldehyde), glutyraldehyde, glyceraldehyde, glycoaldehyde, and glyoxal-dehyde tested were not oxidized by the purified formaldehyde dehydrogenase. The product of formaldehyde oxidation by purified enzyme was demonstrated to be S-for-mylglutathione by measuring the absorption at 240 nm due to the formation of thioester of formaldehyde and reduced glutathione. The Km values for NAD+, formaldehyde, and reduced glutathione were 0.12, 0.31, and 0.16 mm, respectively, for the forward reaction at pH 8.0. The purified formaldehyde dehydrogenase also catalyzed the reduction of S-formylglutathione in the presence of NADH. Formate was not reduced by the purified enzyme. The Km values for S-formylglutathione and NADH were 0.60 and 0.25 mm, respectively, for the reverse reaction at pH 6.0. Formaldehyde dehydrogenase has a molecular weight of 84,000 as determined by gel filtration and subunit molecular weight of 41,000 as determined by sodium dodecyl sulfate-gel electrophoresis. S-Formylglutathione, a product of formaldehyde oxidation, was oxidized by the partially purified formate dehydrogenase from Pichia sp. Formate dehydrogenase has a higher affinity toward S-formylglutathione (Km value 1.8 mm) than toward formate (Km value 25 mm). Antiserum prepared against the purified formaldehyde dehydrogenase from Pichia sp. NRRL-Y-11328 forms strong precipitin bands with isofunctional enzymes from methanol-grown Pichia pastoris NRRL-Y-7556 and Torulopsis candida Y-11419 and weak precipitin bands with Hansenula polymorpha NRRL-Y-2214. No cross-reaction was observed with isofunctional enzyme derived from methanol-grown Kloeckera sp.  相似文献   
102.
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   
103.
Adaptation of microbial communities to faster degradation of xenobiotic compounds after exposure to the compound was studied in ecocores. Radiolabeled test compounds were added to cores that contained natural water and sediment. Adaptation was detected by comparing mineralization rates or disappearance of a parent compound in preexposed and unexposed cores. Microbial communities in preexposed cores from a number of freshwater sampling sites adapted to degrade p-nitrophenol faster; communities from estuarine or marine sites did not show any increase in rates of degradation as a result of preexposure. Adaptation was maximal after 2 weeks and was not detectable after 6 weeks. A threshold concentration of 10 ppb (10 ng/ml) was observed; below this concentration no adaptation was detected. With concentrations of 20 to 100 ppb (20 to 100 ng/ml), the biodegradation rates in preexposed cores were much higher than the rates in control cores and were proportional to the concentration of the test compound. In addition, trifluralin, 2,4-dichlorophenoxyacetic acid, and p-cresol were tested to determine whether preexposure affected subsequent biodegradation. Microbial communities did not adapt to trifluralin. Adaptation to 2,4-dichlorophenoxyacetic acid was similar to adaptation to nitrophenol. p-Cresol was mineralized rapidly in both preexposed and unexposed communities.  相似文献   
104.
Calli derived from leaves and radicles of B. ternifolia were grown on Murashige and Skoog (MS) basal medium, and the effects of different nitrogen sources on the rate of callus growth and on the enzymes related to nitrogen assimilation were studied. Ammonium alone did not support callus growth unless a Krebs-cycle intermediate was added to the medium. The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (EC 1.4.1.2) were measured in homogenates of callus grown on media supplied with different nitrogen sources. The results indicate that leaf and root calli have similar levels of these enzymes when grown on MS medium (Murashige and Skoog 1962. Physiol. Plant. 15, 473–497). However, when the calli were supplied with glutamine as the sole nitrogen source, the activity of glutamate synthase increased in leaf callus but was almost completely inhibited in root callus. The results indicate that calli originated from different B. ternifolia tissues do not have the same biochemical dedifferentiated state.  相似文献   
105.
The effects of p-chloromercuriphenylsulfonic acid (PCMBS), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), phloretin and thiourea on the diffusional permeability of dog erythrocytes to tritiated water and to small 14C-labeled lipophilic and hydrophilic solutes were measured at 37 degrees C by means of the linear diffusion technique. Permeability to 3HHO was significantly decreased by PCMBS but was not affected by the other reagents. The permeability to the small hydrophilic solutes acetamide and urea was decreased by phloretin and thiourea but only the permeability to acetamide was reduced to a statistically significant extent by PCMBS. The permeability to the lipophilic solutes methanol, ethanol and antipyrine was not affected by any of these agents. We interpret these results as an indication that the small lipophilic solutes probably move through lipid areas, that the small hydrophilic solutes probably move through protein associated areas in the erythrocyte membrane and that pathways for the small hydrophilic solutes are distinct from those for water. While the pathways for water may be associated with membrane protein they do not appear to be associated specifically with band 3 protein as has been suggested for human erythrocytes. Diffusional water movement through the dog erythrocyte occurs by two distinct pathways.  相似文献   
106.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   
107.
108.
109.
110.
Methylococcus capsulatus grows only on methane or methanol as its sole source of carbon and energy. Some amino acids serve as nitrogen sources and are converted to keto acids which accumulate in the culture medium. Cell suspensions oxidize methane, methanol, formaldehyde, and formate to carbon dioxide. Other primary alcohols are oxidized only to the corresponding aldehydes. Oxidation of formate by cell suspensions is more sensitive to inhibition by cyanide than is the oxidation of other one carbon compounds. This is due to the cyanide sensitivity of a soluble nicotinamide adenine dinucleotide-specific formate dehydrogenase. Oxidation of formaldehyde and methanol is catalyzed by a nonspecific primary alcohol dehydrogenase which is activated by ammonium ions and is independent of pyridine nucleotides. Some comparisons are made with a strain of Pseudomonas methanica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号