首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4829篇
  免费   386篇
  国内免费   2篇
  5217篇
  2023年   32篇
  2022年   29篇
  2021年   79篇
  2020年   42篇
  2019年   43篇
  2018年   96篇
  2017年   100篇
  2016年   122篇
  2015年   177篇
  2014年   217篇
  2013年   287篇
  2012年   355篇
  2011年   334篇
  2010年   221篇
  2009年   199篇
  2008年   281篇
  2007年   288篇
  2006年   245篇
  2005年   247篇
  2004年   246篇
  2003年   233篇
  2002年   219篇
  2001年   106篇
  2000年   117篇
  1999年   88篇
  1998年   66篇
  1997年   37篇
  1996年   50篇
  1995年   33篇
  1994年   38篇
  1993年   24篇
  1992年   44篇
  1991年   50篇
  1990年   38篇
  1989年   40篇
  1988年   35篇
  1987年   22篇
  1986年   25篇
  1985年   27篇
  1984年   23篇
  1983年   19篇
  1982年   16篇
  1981年   18篇
  1980年   16篇
  1979年   20篇
  1978年   24篇
  1977年   20篇
  1976年   29篇
  1973年   18篇
  1970年   11篇
排序方式: 共有5217条查询结果,搜索用时 15 毫秒
111.
The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components—glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm−1) of interest for individual variables are X1139–X1141 for glucose, X846–X849 for lactate, and X2941–X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.  相似文献   
112.
113.
Experimental and Applied Acarology - In total, 57 ticks were collected from six white-tailed deer (Odocoileus virginianus) and three mule deer (O. hemionus) in northern Mexico during the 2017, 2018...  相似文献   
114.
Journal of Applied Phycology - The thraustochytrid Aurantiochytrium limacinum SR21 is a promising source of docosahexaenoic acid (DHA) for human consumption as dietary supplement, replacing...  相似文献   
115.
The International Journal of Life Cycle Assessment - The current global interest in circular economy (CE) opens an opportunity to make society’s consumption and production patterns more...  相似文献   
116.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   
117.
Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24–48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.  相似文献   
118.
Changes in holocentric chromosome number due to fission and fusion have direct and immediate effects on genome structure and recombination rates. These, in turn, may influence ecology and evolutionary trajectories profoundly. Sedges of the genus Carex (Cyperaceae) comprise ca. 2000 species with holocentric chromosomes. The genus exhibits a phenomenal range in the chromosome number (2n = 10 − 132) with almost not polyploidy. In this study, we integrated the most comprehensive cytogenetic and phylogenetic data for sedges with associated climatic and morphological data to investigate the hypothesis that high recombination rates are selected when evolutionary innovation is required, using chromosome number evolution as a proxy for recombination rate. We evaluated Ornstein–Uhlenbeck models to infer shifts in chromosome number equilibrium and selective regime. We also tested the relationship between chromosome number and diversification rates. Our analyses demonstrate significant correlations between morphology and climatic niche and chromosome number in Carex. Nevertheless, the amount of chromosomal variation that we are able to explain is very small. We recognized a large number of shifts in mean chromosome number, but a significantly lower number in climatic niche and morphology. We also detected a peak in diversification rates near intermediate recombination rates. In combination, these analyses point toward the importance of chromosome evolution to the evolutionary history of Carex. Our work suggests that the effect of chromosome evolution on recombination rates, not just on reproductive isolation, may be central to the evolutionary history of sedges.  相似文献   
119.
Carex section Phacocystis (Cyperaceae) is one of the most diverse and taxonomically complex groups of sedges (between 116 and 147 species), with a worldwide distribution in a wide array of biomes. It has a very complicated taxonomic history, with numerous disagreements among different treatments. We studied the biogeography and niche evolution in a phylogenetic framework to unveil the relative contribution of geographical and ecological drivers to diversification of the group. We used a large species sampling of the section (82% of extant species) to build a phylogeny based on four DNA regions, constrained with a phylogenomic HybSeq tree and dated with six fossil calibrations. Our phylogenetic results recovered section Phacocystis s.s. (core Phacocystis) as sister to section Praelongae. Ancestral area reconstruction points toward the N Pacific as the cradle for the crown diversification of section Phacocystis during the Middle Miocene. Wide distributions were recurrently inferred across deep nodes. Large Northern Hemisphere lineages with geographical congruence were retrieved, pointing toward the importance of allopatric divergence at deep phylogenetic levels, whereas within-area speciation emerges as the predominant pattern at shallow phylogenetic level. The Southern Hemisphere (Neotropics, SW Pacific) was colonized several times from the Northern Hemisphere. The global expansion of Carex section Phacocystis did not entail major ecological changes along the inner branches of the phylogeny. Nevertheless, ecological differentiation seems to gain importance toward recent times.  相似文献   
120.
International Journal of Peptide Research and Therapeutics - Characterized by uncontrolled, long-term high blood sugar levels, diabetes mellitus affects ever increasing numbers of people worldwide....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号