全文获取类型
收费全文 | 624篇 |
免费 | 51篇 |
专业分类
675篇 |
出版年
2023年 | 6篇 |
2022年 | 14篇 |
2021年 | 25篇 |
2020年 | 5篇 |
2019年 | 14篇 |
2018年 | 13篇 |
2017年 | 17篇 |
2016年 | 24篇 |
2015年 | 41篇 |
2014年 | 53篇 |
2013年 | 56篇 |
2012年 | 65篇 |
2011年 | 46篇 |
2010年 | 32篇 |
2009年 | 28篇 |
2008年 | 34篇 |
2007年 | 33篇 |
2006年 | 35篇 |
2005年 | 30篇 |
2004年 | 23篇 |
2003年 | 24篇 |
2002年 | 11篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1976年 | 1篇 |
1973年 | 3篇 |
1968年 | 2篇 |
1963年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有675条查询结果,搜索用时 15 毫秒
151.
Vanessa A. Varaljay Sriram Satagopan Justin A. North Brian Witte Manuella N. Dourado Karthik Anantharaman Mark A. Arbing Shelley Hoeft McCann Ronald S. Oremland Jillian F. Banfield Kelly C. Wrighton F. Robert Tabita 《Environmental microbiology》2016,18(4):1187-1199
Ribulose 1,5‐bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2‐dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO‐encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2/O2 specificity typical of form II enzymes. X‐ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2‐fixing enzymes not previously characterized. 相似文献
152.
Background
There is emerging research to suggest that supine maternal sleep position in late pregnancy may adversely affect fetal wellbeing. However, these studies have all been based on maternal report of sleeping position. Before recommendations to change sleep position can be made it is important to determine the validity of these studies by investigating how accurate pregnant women are in reporting their sleep position. If avoiding the supine sleeping position reduces risk of poor pregnancy outcome, it is also important to know how well women can comply with the instruction to avoid this position and sleep on their left.Method
Thirty women in late pregnancy participated in a three-night observational study and were asked to report their sleeping position. This was compared to sleep position as recorded by a night capable video recording. The participants were instructed to settle to sleep on their left side and if they woke overnight to settle back to sleep on their left.Results
There was a moderate correlation between reported and video-determined left-side sleep time (r = 0.48), mean difference = 3 min (SD = 3.5 h). Participants spent an average of 59.60% (SD = 16.73%) of time in bed on their left side (ICC across multiple nights = 0.67). Those who included left side among their typical sleep positions reported significantly longer sleep during the study (p<0.01).Conclusions
On average participant reports of sleep position were relatively accurate but there were large individual differences in reporting accuracy and in objectively-determined time on left side. Night-to-night consistency was substantial. For those who do not ordinarily sleep on that side, asking participants to sleep on their left may result in reduced sleep duration. This is an important consideration during a sleep-critical time such as late pregnancy. 相似文献153.
Invasions by nonnative plant species are transforming plant communities across the globe. An important challenge for ecologists is to understand how animals will respond to these changes. One way that plant invasions could affect aquatic animals is by changing the rate at which soil communities decompose litter, which could alter the flow of energy and nutrients from plant litter to aquatic communities. In this study, we measured larval amphibian responses to soil conditioned by either introduced or native genotypes of Phragmites australis L. (common reed) in northeastern North America. We collected soil from adjacent stands of introduced and native P. australis at three sites in central New York and inoculated outdoor aquatic mesocosms with soil extracts. Mesocosms contained six Lithobates clamitans Latreille (green frog) tadpoles and either low- or high-quality native P. australis americanus litter. We found that litter decomposition differed based on soil inoculum, and we observed a significant interaction between litter quality and soil inoculum; higher-quality litter tended to decompose faster when exposed to inocula from introduced P. australis, while lower-quality litter tended to decompose faster when exposed to inocula from native P. australis americanus. Tadpoles raised with high-quality litter developed faster and achieved greater body size, but soil inocula had no apparent effect on tadpoles. Our results suggest that plant invasions may alter microbial communities, causing subtle changes in litter decomposition rates, but these changes do not appear strong enough to influence larvae of a widespread amphibian. 相似文献
154.
Jillian M. Deines Kaiyu Guan Bruno Lopez Qu Zhou Cambria S. White Sheng Wang David B. Lobell 《Global Change Biology》2023,29(3):794-807
Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields. It remains unclear, though, how recent cover crop adoption has affected productivity in commercial agricultural systems. Here we perform the first large-scale, field-level analysis of observed yield impacts from cover cropping as implemented across the US Corn Belt. We use validated satellite data products at sub-field scales to analyze maize and soybean yield outcomes for over 90,000 fields in 2019–2020. Because we lack data on cover crop species or timing, we seek to quantify the yield impacts of cover cropping as currently practiced in aggregate. Using causal forests analysis, we estimate an average maize yield loss of 5.5% on fields where cover crops were used for 3 or more years, compared with fields that did not adopt cover cropping. Maize yield losses were larger on fields with better soil ratings, cooler mid-season temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, with larger impacts on fields with warmer June temperatures, lower spring and late-season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent with multiple mechanisms indicated by experimental and simulation-based studies, including the effects of cover crops on nitrogen dynamics, water consumption, and soil oxygen depletion. Our results suggest a need to improve cover crop management to reduce yield penalties, and a potential need to target subsidies based on likely yield impacts. Ultimately, avoiding substantial yield penalties is important for realizing widespread adoption and associated benefits for water quality, erosion, soil carbon, and greenhouse gas emissions. 相似文献
155.
Sara S. Parker Kenneth Tran Ly Adam D. Grant Jillian Sweetland Ashley M. Wang James D. Parker Mackenzie R. Roman Kathylynn Saboda Denise J. Roe Megha Padi Charles W. Wolgemuth Paul Langlais Ghassan Mouneimne 《The Journal of cell biology》2023,222(5)
Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF. 相似文献
156.
A test of the competitive ability–cold tolerance trade-off hypothesis in seasonally breeding beetles
Jillian D. Wettlaufer April Ye Heath A. MacMillan Paul R. Martin 《Ecological Entomology》2023,48(1):55-68
- Closely related species that use similar resources often differ in their seasonal patterns of activity, but the factors that limit their distributions across seasons are unknown for most species. One hypothesis to explain seasonal variation in the distributions of species involves a trade-off between competitive ability and cold tolerance, where tolerance to the cold compromises competitive ability in warmer (benign) temperatures, either at the level of the individual or population.
- We tested both individual-level and population-level mechanisms of this hypothesis in two co-occurring species of temperate burying beetles (Silphidae: Nicrophorus sayi, N. orbicollis) that differ in their seasonal patterns of activity.
- We measured cold tolerance, breeding activity as a function of temperature, and competitive ability as a function of temperature and season.
- Consistent with our hypothesis, the mid-season N. orbicollis was less able to function at the cold temperatures that characterise early spring, when the early-season N. sayi is most active. The larger beetle, however, always won one-on-one competitive trials at warm temperatures, regardless of species, inconsistent with an individual-level trade-off. N. orbicollis was usually larger and successful when competing for the same carrion later in the season, mostly because of its larger population size, consistent with a trade-off between competitive ability, and cold tolerance acting at the population level.
- Our findings suggest that cold temperatures limit the mid-season N. orbicollis from earlier spring emergence, while competitive pressure from the more abundant, larger N. orbicollis constrains the early-season N. sayi from remaining active through the summer.
157.
Kickler K Maltby K Ni Choileain S Stephen J Wright S Hafler DA Jabbour HN Astier AL 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(11):5303-5310
The ubiquitous protein CD46, a regulator of complement activity, promotes T cell activation and differentiation toward a regulatory Tr1-like phenotype. The CD46-mediated differentiation pathway is defective in several chronic inflammatory diseases, underlying the importance of CD46 in controlling T cell function and the need to understand its regulatory mechanisms. Using an RNA interference-based screening approach in primary T cells, we have identified that two members of the G protein-coupled receptor kinases were involved in regulating CD46 expression at the surface of activated cells. We have investigated the role of PGE(2), which binds to the E-prostanoid family of G protein-coupled receptors through four subtypes of receptors called EP 1-4, in the regulation of CD46 expression and function. Conflicting roles of PGE(2) in T cell functions have been reported, and the reasons for these apparent discrepancies are not well understood. We show that addition of PGE(2) strongly downregulates CD46 expression in activated T cells. Moreover, PGE(2) differentially affects T cell activation, cytokine production, and phenotype depending on the activation signals received by the T cells. This was correlated with a distinct pattern of the PGE(2) receptors expressed, with EP4 being preferentially induced by CD46 activation. Indeed, addition of an EP4 antagonist could reverse the effects observed on cytokine production after CD46 costimulation. These data demonstrate a novel role of the PGE(2)-EP4 axis in CD46 functions, which might at least partly explain the diverse roles of PGE(2) in T cell functions. 相似文献
158.
Asmeret Asefaw Berhe K. Blake Suttle Sarah D. Burton Jillian F. Banfield 《Plant and Soil》2012,358(1-2):371-383
Background and Aims
Rainfall is expected to show greater and more variable changes in response to anticipated rising of earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change.Methods
We studied the effects of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change.Results
We found that increases in annual rainfall have important consequences for soil carbon (C) storage, but that the strength and even direction of these effects depend critically on seasonal timing. Additional rainfall during the winter rainy season led to C loss from soil while additions after the typical rainy season increased soil C content. Analysis of MIneral-Organic Matter (OM) associations reveals a potentially powerful mechanism underlying this difference: increased winter rainfall greatly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35% of the variability in C storage under ambient control and extended spring rainfall conditions, compared to less than 0.01% under increased winter rainfall. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40% of the variability in C storage in the control and extended spring rainfall treatments, respectively, but less than 5% in the increased winter rainfall treatment.Conclusions
Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. Such clear differences in the amount and chemical composition of SOM, and in the vertical distribution of oxides in the soil profile in response to treatment timing carry important implications for the C sequestration trajectory of this ecosystem. 相似文献159.
Trf1 Is Not Required for Proliferation or Functional Telomere Maintenance in Chicken DT40 Cells 总被引:1,自引:0,他引:1
Carol Cooley Katie M. Baird Virginie Faure Thomas Wenner Jillian L. Stewart Sonie Modino Predrag Slijepcevic Christine J. Farr Ciaran G. Morrison 《Molecular biology of the cell》2009,20(10):2563-2571
The telomere end-protection complex prevents the ends of linear eukaryotic chromosomes from degradation or inappropriate DNA repair. The homodimeric double-stranded DNA-binding protein, Trf1, is a component of this complex and is essential for mouse embryonic development. To define the requirement for Trf1 in somatic cells, we deleted Trf1 in chicken DT40 cells by gene targeting. Trf1-deficient cells proliferated as rapidly as control cells and showed telomeric localization of Trf2, Rap1, and Pot1. Telomeric G-strand overhang lengths were increased in late-passage Trf1-deficient cells, although telomere lengths were unaffected by Trf1 deficiency, as determined by denaturing Southern and quantitative FISH analysis. Although we observed some clonal variation in terminal telomere fragment lengths, this did not correlate with cellular Trf1 levels. Trf1 was not required for telomere seeding, indicating that de novo telomere formation can proceed without Trf1. The Pin2 isoform and a novel exon 4, 5–deleted isoform localized to telomeres in Trf1-deficient cells. Trf1-deficient cells were sensitive to DNA damage induced by ionizing radiation. Our data demonstrate that chicken DT40 B cells do not require Trf1 for functional telomere structure and suggest that Trf1 may have additional, nontelomeric roles involved in maintaining genome stability. 相似文献
160.
Malinowska M Wilkinson FL Langford-Smith KJ Langford-Smith A Brown JR Crawford BE Vanier MT Grynkiewicz G Wynn RF Wraith JE Wegrzyn G Bigger BW 《PloS one》2010,5(12):e14192