首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   604篇
  免费   66篇
  670篇
  2023年   5篇
  2022年   14篇
  2021年   23篇
  2020年   5篇
  2019年   11篇
  2018年   13篇
  2017年   17篇
  2016年   23篇
  2015年   41篇
  2014年   53篇
  2013年   56篇
  2012年   65篇
  2011年   46篇
  2010年   32篇
  2009年   28篇
  2008年   34篇
  2007年   33篇
  2006年   35篇
  2005年   30篇
  2004年   23篇
  2003年   24篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1977年   1篇
  1973年   2篇
  1968年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有670条查询结果,搜索用时 0 毫秒
621.
622.
In order to successfully respond to stress all cells rely on the ability of the proteasomal and lysosomal proteolytic pathways to continually maintain protein turnover. Increasing evidence suggests that as part of normal aging there are age-related impairments in protein turnover by the proteasomal proteolytic pathway, and perturbations of the lysosomal proteolytic pathway. Furthermore, with numerous studies suggest an elevated level of a specialized form of lysosomal proteolysis (autophagy or macroautophagy) occurs during the aging of multiple cell types. Age-related alterations in proteolysis are believed to contribute to a wide variety of neuropathological manifestations including elevations in protein oxidation, protein aggregation, and cytotoxicity. Within the brain altered protein turnover is believed to contribute to elevations in multiple forms of protein aggregation ranging from tangle and Lewy body formation, to lipofuscin-ceroid accumulation. In this review we discuss and summarize evidence for proteolytic alterations occurring in the aging brain, the contribution of oxidative stress to disruption of protein turnover during normal aging, the evidence for cross-talk between the proteasome and lysosomal proteolytic pathways in the brain, and explore the contribution of altered proteolysis as a mediator of oxidative stress, neuropathology, and neurotoxicity in the aging brain.  相似文献   
623.
624.
Stable isotope probing (SIP) has been used to track nutrient flows in microbial communities, but existing protein-based SIP methods capable of quantifying the degree of label incorporation into peptides and proteins have been demonstrated only by targeting usually less than 100 proteins per sample. Our method automatically (i) identifies the sequence of and (ii) quantifies the degree of heavy atom enrichment for thousands of proteins from microbial community proteome samples. These features make our method suitable for comparing isotopic differences between closely related protein sequences, and for detecting labeling patterns in low-abundance proteins or proteins derived from rare community members. The proteomic SIP method was validated using proteome samples of known stable isotope incorporation levels at 0.4%, ~50%, and ~98%. The method was then used to monitor incorporation of (15)N into established and regrowing microbial biofilms. The results indicate organism-specific migration patterns from established communities into regrowing communities and provide insights into metabolism during biofilm formation. The proteomic SIP method can be extended to many systems to track fluxes of (13)C or (15)N in microbial communities.  相似文献   
625.
While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.  相似文献   
626.
627.
The extinct aurochs (Bos primigenius primigenius) was a large type of cattle that ranged over almost the whole Eurasian continent. The aurochs is the wild progenitor of modern cattle, but it is unclear whether European aurochs contributed to this process. To provide new insights into the demographic history of aurochs and domestic cattle, we have generated high-confidence mitochondrial DNA sequences from 59 archaeological skeletal finds, which were attributed to wild European cattle populations based on their chronological date and/or morphology. All pre-Neolithic aurochs belonged to the previously designated P haplogroup, indicating that this represents the Late Glacial Central European signature. We also report one new and highly divergent haplotype in a Neolithic aurochs sample from Germany, which points to greater variability during the Pleistocene. Furthermore, the Neolithic and Bronze Age samples that were classified with confidence as European aurochs using morphological criteria all carry P haplotype mitochondrial DNA, suggesting continuity of Late Glacial and Early Holocene aurochs populations in Europe. Bayesian analysis indicates that recent population growth gives a significantly better fit to our data than a constant-sized population, an observation consistent with a postglacial expansion scenario, possibly from a single European refugial population. Previous work has shown that most ancient and modern European domestic cattle carry haplotypes previously designated T. This, in combination with our new finding of a T haplotype in a very Early Neolithic site in Syria, lends persuasive support to a scenario whereby gracile Near Eastern domestic populations, carrying predominantly T haplotypes, replaced P haplotype-carrying robust autochthonous aurochs populations in Europe, from the Early Neolithic onward. During the period of coexistence, it appears that domestic cattle were kept separate from wild aurochs and introgression was extremely rare.  相似文献   
628.
Because of the structural and functional homology to the hair cells of the mammalian inner ear, the neurons that innervate the Drosophila external sense organs provide an excellent model system for the study of mechanosensation. This protocol describes a simple touch behavior in fruit flies which can be used to identify mutations that interfere with mechanosensation. The tactile stimulation of a macrochaete bristle on the thorax of flies elicits a grooming reflex from either the first or third leg. Mutations that interfere with mechanotransduction (such as NOMPC), or with other aspects of the reflex arc, can inhibit the grooming response. A traditional screen of adult behaviors would have missed mutants that have essential roles during development. Instead, this protocol combines the touch screen with mosaic analysis with a repressible cell marker (MARCM) to allow for only limited regions of homozygous mutant cells to be generated and marked by the expression of green fluorescent protein (GFP). By testing MARCM clones for abnormal behavioral responses, it is possible to screen a collection of lethal p-element mutations to search for new genes involved in mechanosensation that would have been missed by more traditional methods.  相似文献   
629.
Guanosine 3′,5′-cyclic monophosphate (cGMP) and small GTPase Rac are critical regulators of cell functions. Recently, Rac has been shown to use its downstream effector p21-activated kinase (PAK) to directly activate transmembrane guanylyl cyclases (GCs). This novel Rac/PAK/GC/cGMP signaling pathway bridges Rac and cGMP, and provides a general molecular mechanism for diverse receptors to regulate physiological functions such as cell migration through elevating the cellular cGMP level.  相似文献   
630.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号