首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6835篇
  免费   618篇
  国内免费   12篇
  2023年   61篇
  2022年   122篇
  2021年   243篇
  2020年   104篇
  2019年   172篇
  2018年   191篇
  2017年   190篇
  2016年   247篇
  2015年   367篇
  2014年   372篇
  2013年   469篇
  2012年   566篇
  2011年   504篇
  2010年   321篇
  2009年   252篇
  2008年   353篇
  2007年   357篇
  2006年   312篇
  2005年   302篇
  2004年   227篇
  2003年   207篇
  2002年   232篇
  2001年   150篇
  2000年   192篇
  1999年   133篇
  1998年   53篇
  1997年   31篇
  1996年   36篇
  1995年   47篇
  1994年   35篇
  1993年   35篇
  1992年   70篇
  1991年   59篇
  1990年   58篇
  1989年   60篇
  1988年   45篇
  1987年   33篇
  1986年   43篇
  1985年   44篇
  1984年   26篇
  1983年   22篇
  1982年   15篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   7篇
  1973年   7篇
  1972年   6篇
排序方式: 共有7465条查询结果,搜索用时 15 毫秒
971.
Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions.  相似文献   
972.

Background

Silkworm fecal matter is considered one of the richest sources of antimicrobial and antiviral protein (substances) and such economically feasible and eco-friendly proteins acting as secondary metabolites from the insect system can be explored for their practical utility in conferring broad spectrum disease resistance against pathogenic microbial specimens.

Methodology/Principal Findings

Silkworm fecal matter extracts prepared in 0.02 M phosphate buffer saline (pH 7.4), at a temperature of 60°C was subjected to 40% saturated ammonium sulphate precipitation and purified by gel-filtration chromatography (GFC). SDS-PAGE under denaturing conditions showed a single band at about 21.5 kDa. The peak fraction, thus obtained by GFC wastested for homogeneityusing C18reverse-phase high performance liquid chromatography (HPLC). The activity of the purified protein was tested against selected Gram +/− bacteria and phytopathogenic Fusarium species with concentration-dependent inhibitionrelationship. The purified bioactive protein was subjected to matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS) and N-terminal sequencing by Edman degradation towards its identification. The N-terminal first 18 amino acid sequence following the predicted signal peptide showed homology to plant germin-like proteins (Glp). In order to characterize the full-length gene sequence in detail, the partial cDNA was cloned and sequenced using degenerate primers, followed by 5′- and 3′-rapid amplification of cDNA ends (RACE-PCR). The full-length cDNA sequence composed of 630 bp encoding 209 amino acids and corresponded to germin-like proteins (Glps) involved in plant development and defense.

Conclusions/Significance

The study reports, characterization of novel Glpbelonging to subfamily 3 from M. alba by the purification of mature active protein from silkworm fecal matter. The N-terminal amino acid sequence of the purified protein was found similar to the deduced amino acid sequence (without the transit peptide sequence) of the full length cDNA from M. alba.  相似文献   
973.
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.  相似文献   
974.
During a random survey of entomopathogenic nematodes in the provinces of Sichuan and Gansu (eastern Tibet) in 2004, soil samples from several sites were collected and tested for the incidence of entomopathogenic nematodes. A new species was collected in this survey and it is described herein as Steinernema cholashanense n. sp. Steinernema cholashanense n. sp. is characterized by morphology and morphometry of the IJ and male. For the IJ, the new species can be recognized by the average body length 843 microm, esophagus length 125 microm, H%=39% and E%=81%. The lateral field pattern is 2, 5, 7, 4, 2. The male of the first generation is characterized by spicule shape and length and especially with prominent velum and the presence of a mucron on both generations. The average body length of the IJ of S. cholashanense n. sp. (843 microm) is shorter than that of S. oregonense (980 microm), S. kraussei (951 microm) and S. litorale (909 microm), similar to that of S. feltiae (849 microm), but longer than that of S. weiseri (740 microm), S. jollietti (711 microm) and S. hebeiense (658 microm). Esophagus length of the new species (125 microm) is closer to that of S. jollieti (123 microm) but longer than that of S. weiseri (113 microm) and shorter than that of S. oregonense (132 microm), S. kraussei (134 microm) and S. feltiae (136 microm). E% of the new species (81) is similar to that of S. kraussei (80), but smaller than that of S. jollieti (88), S. weiseri (95), S. oregonense (100) and S. feltiae (119). Spicule head length of the new species is almost the same as its width, this character is similar to that of S. kraussei but it is different from this species by its prominent velum. The new species can be recognized further by characteristics of sequences of ITS and D2D3 regions and cross hybridization with closely related species, S. feltiae, S. kraussei and S. oregonense.  相似文献   
975.
The periodontal pathogen Porphyromonas gingivalis is highly resistant to the bactericidal activity of human complement, which is present in the gingival crevicular fluid at 70% of serum concentration. All thirteen clinical and laboratory P. gingivalis strains tested were able to capture the human complement inhibitor C4b-binding protein (C4BP), which may contribute to their serum resistance. Accordingly, in serum deficient of C4BP, it was found that significantly more terminal complement component C9 was deposited on P. gingivalis. Moreover, using purified proteins and various isogenic mutants, we found that the cysteine protease high molecular weight arginine-gingipain A (HRgpA) is a crucial C4BP ligand on the bacterial surface. Binding of C4BP to P. gingivalis appears to be localized to two binding sites: on the complement control protein 1 domain and complement control protein 6 and 7 domains of the alpha-chains. Furthermore, the bacterial binding of C4BP was found to increase with time of culture and a particularly strong binding was observed for large aggregates of bacteria that formed during culture on solid blood agar medium. Taken together, gingipains appear to be a very significant virulence factor not only destroying complement due to proteolytic degradation as we have shown previously, but was also inhibiting complement activation due to their ability to bind the complement inhibitor C4BP.  相似文献   
976.
Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.  相似文献   
977.
In the present study, we report the first characterization of gene conversion tract length, continuity and fidelity for pathways of gene targeting, ectopic and intrachromosomal homologous recombination using the same locus and mammalian somatic cell type. In this isogenic cell system, the vast majority of recombinants (> 97%) are generated by homologous recombination and display a high degree of fidelity in the gene conversion process. Individual gene conversion tracts are highly likely to involve single, independent recombination events and proceed through a heteroduplex DNA intermediate. In all recombination pathways, gene conversion tracts are long, extending up to ∼ 2 kb. Most gene conversion tracts are continuous in favor of donor region sequences, but in a small fraction of recombinants (15%), discontinuous gene conversion tracts are observed. In most cases, the recombination donor sequence is unaltered, although in two cases of intrachromosomal recombination, both recombination donor and recipient sequences bear gene conversion tracts. Overall, gene conversion events are similar, both qualitatively and quantitatively, for homologous recombination within and between mammalian chromosomes.  相似文献   
978.
Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors to selectively redirect therapeutic T cells against myelin basic protein (MBP)-specific T lymphocytes implicated in MS. We generated two heterodimeric receptors that genetically link the human MBP84-102 epitope to HLA-DR2 and either incorporate or lack a TCRzeta signaling domain. The Ag-MHC domain serves as a bait, binding the TCR of MBP-specific target cells. The zeta signaling region stimulates the therapeutic cell after cognate T cell engagement. Both receptors were well expressed on primary T cells or T hybridomas using a tricistronic (alpha, beta, green fluorescent protein) retroviral expression system. MBP-DR2-zeta-, but not MBP-DR2, modified CTL were specifically stimulated by cognate MBP-specific T cells, proliferating, producing cytokine, and killing the MBP-specific target cells. The receptor-modified therapeutic cells were active in vivo as well, eliminating Ag-specific T cells in a humanized mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP84-102/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS.  相似文献   
979.
Recovery of human cytomegalovirus (HCMV)-specific T immunity is critical for protection against HCMV disease in the early phase after allogeneic stem cell transplantation (SCT). Using an enzyme-linked immunospot assay with overlapping 15-mer peptides spanning pp65 and immediate-early 1 HCMV proteins, we investigated which HCMV-specific CD8+ gamma interferon-positive (IFN-γ+) T-cell responses against pp65 and IE-1 were associated with control of HCMV replication in 48 recipients of unmanipulated HLA-matched allografts at 3 months (M3) and 6 months (M6) after SCT and in 23 donors. At M3 after SCT, the magnitude of the pp65-specific IFN-γ-producing CD8+ T-cell response was greater in recipients than in donors, regardless of HCMV status. In contrast, expansion of IE-1-specific CD8+ T cells at M3 was associated with protection against HCMV, and no patient with this expansion had HCMV replication at M3. At M6, the number of HCMV-specific CD8+ T cells against both pp65 and IE-1 had expanded in all recipients, regardless of their previous levels of HCMV replication. The recipients' HCMV-specific CD8+ T cells already detectable in related donors were predominantly targeting pp65. In contrast, in 40% of the cases, the HCMV-specific CD8+ T cells in recipients involved new CD8+ T-cell specificities undetectable in their related donors and preferentially targeting IE-1. Taken together, these results showed that the delay in reconstituting IE-1-specific CD8+ T cells is correlated with the lack of protection against HCMV in the first 3 months after SCT. They also show that IE-1 is a major antigenic determinant of the early restoration of protective immunity to HCMV after SCT.  相似文献   
980.
Fusarium verticillioides (teleomorph Gibberella moniliformis) is an ascomycete known to produce a variety of secondary metabolites, including fumonisins, fusaric acid and bikaverin. These metabolites are synthesized when the fungus is under stress, notably nutrient limitations. To date we have limited understanding of the complex regulatory process associated with fungal secondary metabolism. In this study we generated a collection of F. verticillioides mutants by using REMI (restriction enzyme mediated integration) mutagenesis and in the process identified a strain, R647, that carries a mutation in a gene designated GAC1. Mutation in the GACI locus, which encodes a putative GTPase activating protein, resulted in the increased production of bikaverin, suggesting that GAC1 is negatively associated with bikaverin biosynthesis. Complementation of R647 with the wildtype GAC1 gene restored the bikaverin production level to that of the wild-type progenitor, demonstrating that gac1 mutation was directly responsible for the overproduction of bikaverin. We also demonstrated that AREA, encoding global nitrogen regulator, and PKS4, encoding polyketide synthase, are downstream genes that respectively are regulated positively and negatively by GAC1. Our results suggest that GAC1 plays an important role in signal transduction regulating bikaverin production in F. verticillioides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号