首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   65篇
  2023年   3篇
  2022年   11篇
  2021年   23篇
  2020年   5篇
  2019年   11篇
  2018年   13篇
  2017年   17篇
  2016年   23篇
  2015年   41篇
  2014年   54篇
  2013年   56篇
  2012年   65篇
  2011年   46篇
  2010年   32篇
  2009年   28篇
  2008年   34篇
  2007年   33篇
  2006年   35篇
  2005年   30篇
  2004年   23篇
  2003年   24篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1973年   2篇
  1968年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有659条查询结果,搜索用时 156 毫秒
11.
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.  相似文献   
12.
Throughout their global range, oak‐dominated ecosystems have undergone state changes in stand structure and composition. Land managers face an especially acute challenge in restoring oak ecosystems and promoting oak regeneration in urban–exurban areas, where high‐intensity silvicultural treatments are often not feasible. To investigate low‐intensity management alternatives which could be widely applied in urban–exurban forests, a large‐scale adaptive management experiment was implemented in Lake County, IL, in 2012. Five canopy manipulation treatments of varying intensity, timing, and spatial aggregation were replicated across three study areas and oak seedlings were under‐planted into treatment units following management. Responses of understory light environment, shrub and groundlayer plant communities, and survival and growth of underplanted oak seedlings were evaluated. Understory light availability, canopy openness, total groundlayer plant cover, and groundlayer species diversity all differed among treatments. However, although understory light availability was significantly increased by canopy manipulation, groundlayer communities and oak seedling survival and growth did not differ among treatments. High overall seedling survival rates suggest current conditions are amenable to oak regeneration, but long‐term monitoring will be needed to assess the potential for seedlings to transition to the sapling and canopy layers. Early results demonstrate that canopy‐focused silvicultural treatments can affect the understory light environment and, to some degree, groundlayer plant communities. However, underplanting of oak seedlings paired with subcanopy thinning may be sufficient to restore an oak seedling layer, and (when necessary or preferred) canopy manipulation could potentially be deferred until later in the restoration timeline to promote oak recruitment.  相似文献   
13.
The host protein viperin is an interferon stimulated gene (ISG) that is up-regulated during a number of viral infections. In this study we have shown that dengue virus type-2 (DENV-2) infection significantly induced viperin, co-incident with production of viral RNA and via a mechanism requiring retinoic acid-inducible gene I (RIG-I). Viperin did not inhibit DENV-2 entry but DENV-2 RNA and infectious virus release was inhibited in viperin expressing cells. Conversely, DENV-2 replicated to higher tires earlier in viperin shRNA expressing cells. The anti-DENV effect of viperin was mediated by residues within the C-terminal 17 amino acids of viperin and did not require the N-terminal residues, including the helix domain, leucine zipper and S-adenosylmethionine (SAM) motifs known to be involved in viperin intracellular membrane association. Viperin showed co-localisation with lipid droplet markers, and was co-localised and interacted with DENV-2 capsid (CA), NS3 and viral RNA. The ability of viperin to interact with DENV-2 NS3 was associated with its anti-viral activity, while co-localisation of viperin with lipid droplets was not. Thus, DENV-2 infection induces viperin which has anti-viral properties residing in the C-terminal region of the protein that act to restrict early DENV-2 RNA production/accumulation, potentially via interaction of viperin with DENV-2 NS3 and replication complexes. These anti-DENV-2 actions of viperin show both contrasts and similarities with other described anti-viral mechanisms of viperin action and highlight the diverse nature of this unique anti-viral host protein.  相似文献   
14.
Microglia are the resident macrophage-like cells of the central nervous system (CNS) and, as such, have critically important roles in physiological and pathological processes such as CNS maturation in development, multiple sclerosis, and spinal cord injury. Microglia can be activated and recruited to action by neuronal injury or stimulation, such as axonal damage seen in MS or ischemic brain trauma resulting from stroke. These immunocompetent members of the CNS are also thought to have roles in synaptic plasticity under non-pathological conditions. We employ protocols for culturing microglia from the neonatal and adult tissues that are aimed to maximize the viable cell numbers while minimizing confounding variables, such as the presence of other CNS cell types and cell culture debris. We utilize large and easily discernable CNS components (e.g. cortex, spinal cord segments), which makes the entire process feasible and reproducible. The use of adult cells is a suitable alternative to the use of neonatal brain microglia, as many pathologies studied mainly affect the postnatal spinal cord. These culture systems are also useful for directly testing the effect of compounds that may either inhibit or promote microglial activation. Since microglial activation can shape the outcomes of disease in the adult CNS, there is a need for in vitro systems in which neonatal and adult microglia can be cultured and studied.  相似文献   
15.

Background

In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.

Methodology/Principal findings

By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.

Conclusion

A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.  相似文献   
16.
Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer.  相似文献   
17.
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.  相似文献   
18.
We genotyped a Chinese and an Indian-origin rhesus macaque using the Affymetrix Genome-Wide Human SNP Array 6.0 and cataloged 85,473 uniquely mapping heterospecific SNPs. These SNPs were assigned to rhesus chromosomes according to their probe sequence alignments as displayed in the human and rhesus reference sequences. The conserved gene order (synteny) revealed by heterospecific SNP maps is in concordance with that of the published human and rhesus macaque genomes.Using these SNPs' original human rs numbers, we identified 12,328 genes annotated in humans that are associated with these SNPs, 3674 of which were found in at least one of the two rhesus macaques studied. Due to their density, the heterospecific SNPs allow fine-grained comparisons, including approximate boundaries of intra- and extra-chromosomal rearrangements involving gene orthologs, which can be used to distinguish rhesus macaque chromosomes from human chromosomes.  相似文献   
19.
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCFCdc4 and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCFCdc4 ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCFCdc4 and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCFCdc4 is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号