首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2739篇
  免费   246篇
  2023年   8篇
  2022年   16篇
  2021年   43篇
  2020年   39篇
  2019年   45篇
  2018年   51篇
  2017年   47篇
  2016年   58篇
  2015年   126篇
  2014年   128篇
  2013年   162篇
  2012年   175篇
  2011年   202篇
  2010年   143篇
  2009年   119篇
  2008年   152篇
  2007年   179篇
  2006年   166篇
  2005年   162篇
  2004年   197篇
  2003年   157篇
  2002年   116篇
  2001年   24篇
  2000年   18篇
  1999年   27篇
  1998年   52篇
  1997年   29篇
  1996年   28篇
  1995年   17篇
  1994年   30篇
  1993年   24篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   26篇
  1986年   14篇
  1985年   13篇
  1984年   10篇
  1983年   6篇
  1982年   11篇
  1981年   10篇
  1980年   7篇
  1978年   9篇
  1976年   6篇
  1974年   9篇
  1972年   6篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2985条查询结果,搜索用时 31 毫秒
91.
Wnt signaling is required for both the development and homeostasis of the skin, yet its contribution to skin wound repair remains controversial. By employing Axin2LacZ/+ reporter mice we evaluated the spatial and temporal distribution patterns of Wnt responsive cells, and found that the pattern of Wnt responsiveness varies with the hair cycle, and correlates with wound healing potential. Using Axin2LacZ/LacZ mice and an ear wound model, we demonstrate that amplified Wnt signaling leads to improved healing. Utilizing a biochemical approach that mimics the amplified Wnt response of Axin2LacZ/LacZ mice, we show that topical application of liposomal Wnt3a to a non-healing wound enhances endogenous Wnt signaling, and results in better skin wound healing. Given the importance of Wnt signaling in the maintenance and repair of skin, liposomal Wnt3a may have widespread application in clinical practice.  相似文献   
92.
The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their community will be influenced with consequences for conservation and management actions.  相似文献   
93.
94.
Lancaster  Jill  Downes  Barbara J.  Lester  Rebecca E.  Rice  Stephen P. 《Oecologia》2020,192(2):375-389
Oecologia - Amongst oviparous animals, the spatial distribution of individuals is often set initially by where females lay eggs, with potential implications for populations and species coexistence....  相似文献   
95.
Anadromous salmonids are viewed as a prized commodity and cultural symbol throughout the Pacific coast of North America. Unfortunately, several native salmonid populations are threatened or at risk of extinction. Despite this, little is known about the behavior and survival of these fish as the juveniles transition from freshwater to the ocean. Our primary objectives were to estimate survival of juvenile steelhead migrating between trapping sites and the ocean and evaluate whether survival in the estuary varies temporally (within a year) or spatially (within and between estuaries) within the same distinct population segment. We also evaluated whether flow or fork length were correlated with survival and collected information on variables that have been demonstrated to affect smolt survival in other studies to lend insight regarding differences in survival estimates between basins. We compared run timing, migration rate, survival, condition factor, age composition and time of residence in the estuary for steelhead outmigrants from each basin and measured parasite loads in outmigrating steelhead to evaluate potential differences in parasite density and parasite community between basins. In 2009, we implanted acoustic transmitters in 139 wild steelhead smolts in two small rivers on the Oregon Coast. In general, only 40–50 % of the wild steelhead smolts tagged at upstream smolt traps were detected entering the ocean. The majority of mortality occurred in the lower estuary near the ocean. Wild steelhead smolts typically spent less than 1 day in the estuary in both basins. Using similar data from previous studies in the Nehalem and Alsea basins, we showed that survival appears to be negatively correlated with flow in most releases, and in 2009 fork length was not correlated with survival. Our observations provide baseline information on factors that could influence smolt survival through the estuary as well as smolt to adult survival in these basins, and emphasize the importance of monitoring smolt survival in the estuary.  相似文献   
96.
97.
A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as ‘pectic plasticizers’. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of ‘plasticising’ the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.  相似文献   
98.
99.
Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and for detecting signs of life on other planets, such as Mars. An investigation using laser desorption Fourier transform mass spectrometry was conducted to determine whether geomatrix-assisted laser desorption/ionization (GALDI) can be used to detect amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) associated with mineral phases and whether the geomatrix impacts detection. Iron oxide (Fe2 O 3 ) and sodium chloride (NaCl) were investigated as clean chemical analogues of hematite and halite, respectively, which have both been detected on the surface of Mars. Samples were prepared by 2 methods: (1) application of analyte solution to the geomatrix surface with subsequent drying; and (2) physical mixing of analyte and geomatrix. Amino acids incorporated within NaCl by physical mixing yielded a better signal-to-noise ratio than those that were applied to the surface of a NaCl pellet. The composition of the geomatrix had an influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the NaCl prepared samples. However, no biomolecular ion species were observed in samples using Fe 2 O 3 as geomatrix. Instead, only minor peaks that may correspond to ions derived from fragments of the biomolecules were obtained.  相似文献   
100.
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号