首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2685篇
  免费   251篇
  2936篇
  2023年   10篇
  2022年   28篇
  2021年   42篇
  2020年   39篇
  2019年   44篇
  2018年   51篇
  2017年   46篇
  2016年   57篇
  2015年   124篇
  2014年   124篇
  2013年   161篇
  2012年   177篇
  2011年   199篇
  2010年   141篇
  2009年   120篇
  2008年   150篇
  2007年   176篇
  2006年   161篇
  2005年   158篇
  2004年   199篇
  2003年   152篇
  2002年   114篇
  2001年   26篇
  2000年   17篇
  1999年   26篇
  1998年   50篇
  1997年   28篇
  1996年   29篇
  1995年   16篇
  1994年   29篇
  1993年   25篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   13篇
  1988年   12篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   11篇
  1983年   6篇
  1982年   11篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1974年   7篇
  1971年   5篇
  1967年   4篇
  1962年   5篇
排序方式: 共有2936条查询结果,搜索用时 15 毫秒
991.
Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1–4, 8–11 and 15–18. On day 19, mice were infected with 5×105 C. albicans. We also determined the effect of chronic Δ9-THC (4–64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×104 C. albicans on day 2, followed by a higher challenge with 5×105 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.  相似文献   
992.
The molecular pathogenesis of autism is complex and involves numerous genomic, epigenomic, proteomic, metabolic, and physiological alterations. Elucidating and understanding the molecular processes underlying the pathogenesis of autism is critical for effective clinical management and prevention of this disorder. The goal of this study is to investigate key molecular alterations postulated to play a role in autism and their role in the pathophysiology of autism. In this study we demonstrate that DNA isolated from the cerebellum of BTBR T+tf/J mice, a relevant mouse model of autism, and from human post-mortem cerebellum of individuals with autism, are both characterized by an increased levels of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). The increase in 8-oxodG and 5mC content was associated with a markedly reduced expression of the 8-oxoguanine DNA-glycosylase 1 (Ogg1) and increased expression of de novo DNA methyltransferases 3a and 3b (Dnmt3a and Dnmt3b). Interestingly, a rise in the level of 5hmC occurred without changes in the expression of ten-eleven translocation expression 1 (Tet1) and Tet2 genes, but significantly correlated with the presence of 8-oxodG in DNA. This finding and similar elevation in 8-oxodG in cerebellum of individuals with autism and in the BTBR T+tf/J mouse model warrant future large-scale studies to specifically address the role of OGG1 alterations in pathogenesis of autism.  相似文献   
993.
In May of 2014, the NIH Director together with the Director of the Office of Research on Women’s Health announced plans to take a multi-dimensional approach to address the over reliance on male cells and animals in preclinical research. The NIH is engaging the scientific community in the development of policies to improve the sex balance in research. The present, past, and future presidents of the Organization for the Study of Sex Differences, in order to encourage thoughtful discussion among scientists, pose a series of questions to generate ideas in three areas: 1. research strategies, 2. educational strategies, and 3. strategies to monitor effectiveness of policies to improve the sex balance in research. By promoting discussion within the scientific community, a consensus will evolve that will move science forward in a productive and effective manner.  相似文献   
994.
The ultrashort-acting benzodiazepine (USA BZD) agonists reported previously have been structurally modified to improve aqueous solubility. Lactam-to-amidine modifications, replacement of the C5-haloaryl ring, and annulation of heterocycles are presented. These analogues retain BZD receptor potency and full agonism profiles.  相似文献   
995.
Inhibitors of the MAP kinase p38 provide a novel approach for the treatment of osteoporosis, inflammatory disorders, and cancer. We have identified N-(3-tert-butyl-1-methyl-5-pyrazolyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea as a potent and selective p38 kinase inhibitor in biochemical and cellular assays. This compound is orally active in two acute models of cytokine release (TNF-induced IL-6 and LPS-induced TNF) and a chronic model of arthritis (20-day murine collagen-induced arthritis).  相似文献   
996.

Background

There have been dramatic increases over the past 20 years in the number of nonacademic, private-sector physicians who serve as principal investigators on US clinical trials sponsored by the pharmaceutical industry. However, there has been little research on the implications of these investigators'' role in clinical investigation. Our objective was to study private-sector clinics involved in US pharmaceutical clinical trials to understand the contract research arrangements supporting drug development, and specifically how private-sector physicians engaged in contract research describe their professional identities.

Methods and Findings

We conducted a qualitative study in 2003–2004 combining observation at 25 private-sector research organizations in the southwestern United States and 63 semi-structured interviews with physicians, research staff, and research participants at those clinics. We used grounded theory to analyze and interpret our data. The 11 private-sector physicians who participated in our study reported becoming principal investigators on industry clinical trials primarily because contract research provides an additional revenue stream. The physicians reported that they saw themselves as trial practitioners and as businesspeople rather than as scientists or researchers.

Conclusions

Our findings suggest that in addition to having financial motivation to participate in contract research, these US private-sector physicians have a professional identity aligned with an industry-based approach to research ethics. The generalizability of these findings and whether they have changed in the intervening years should be addressed in future studies. Please see later in the article for the Editors'' Summary.  相似文献   
997.
998.
To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.  相似文献   
999.
The Drosophila mutant loechrig (loe) shows age-dependent degeneration of the nervous system and is caused by the loss of a neuronal isoform of the AMP-activated protein kinase (AMPK) γ-subunit (also known as SNF4Aγ). The trimeric AMPK complex is activated by low energy levels and metabolic insults and regulates multiple important signal pathways that control cell metabolism. A well-known downstream target of AMPK is hydroxyl-methylglutaryl-CoA reductase (HMGR), a key enzyme in isoprenoid synthesis, and we have previously shown that HMGR genetically interacts with loe and affects the severity of the degenerative phenotype. Prenylation of proteins like small G-proteins is an important posttranslational modification providing lipid moieties that allow the association of these proteins with membranes, thereby facilitating their subsequent activation. Rho proteins have been extensively studied in neuronal outgrowth, however, much less is known about their function in neuronal maintenance. Here we show that the loe mutation interferes with isoprenoid synthesis, leading to increased prenylation of the small GTPase Rho1, the fly orthologue of vertebrate RhoA. We also demonstrate that increased prenylation and Rho1 activity causes neurodegeneration and aggravates the behavioral and degenerative phenotypes of loe. Because we cannot detect defects in the development of the central nervous system in loe, this suggests that loe only interferes with the function of the RhoA pathway in maintaining neuronal integrity during adulthood. In addition, our results show that alterations in isoprenoids can result in progressive neurodegeneration, supporting findings in vertebrates that prenylation may play a role in neurodegenerative diseases like Alzheimer's Disease.  相似文献   
1000.

Background

Vitamin A is necessary for kidney development and has also been linked to regulation of solute and water homeostasis and to protection against kidney stone disease, infection, inflammation, and scarring. Most functions of vitamin A are mediated by its main active form, all-trans retinoic acid (tRA), which binds retinoic acid receptors (RARs) to modulate gene expression. We and others have recently reported that renal tRA/RAR activity is confined to the ureteric bud (UB) and collecting duct (CD) cell lineage, suggesting that endogenous tRA/RARs primarily act through regulating gene expression in these cells in embryonic and adult kidney, respectively.

Methodology/Principal Findings

To explore target genes of endogenous tRA/RARs, we employed the mIMCD-3 mouse inner medullary CD cell line, which is a model of CD principal cells and exhibits constitutive tRA/RAR activity as CD principal cells do in vivo. Combining antagonism of RARs, inhibition of tRA synthesis, exposure to exogenous tRA, and gene expression profiling techniques, we have identified 125 genes as candidate targets and validated 20 genes that were highly regulated (Dhrs3, Sprr1a, and Ppbp were the top three). Endogenous tRA/RARs were more important in maintaining, rather than suppressing, constitutive gene expression. Although many identified genes were expressed in UBs and/or CDs, their exact functions in this cell lineage are still poorly defined. Nevertheless, gene ontology analysis suggests that these genes are involved in kidney development, renal functioning, and regulation of tRA signaling.

Conclusions/Significance

A rigorous approach to defining target genes for endogenous tRA/RARs has been established. At the pan-genomic level, genes regulated by endogenous tRA/RARs in a CD cell line have been catalogued for the first time. Such a catalogue will guide further studies on molecular mediators of endogenous tRA/RARs during kidney development and in relation to renal defects associated with vitamin A deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号