首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2625篇
  免费   233篇
  2858篇
  2023年   10篇
  2022年   27篇
  2021年   41篇
  2020年   38篇
  2019年   44篇
  2018年   51篇
  2017年   46篇
  2016年   57篇
  2015年   124篇
  2014年   124篇
  2013年   159篇
  2012年   175篇
  2011年   196篇
  2010年   139篇
  2009年   117篇
  2008年   148篇
  2007年   174篇
  2006年   159篇
  2005年   155篇
  2004年   196篇
  2003年   151篇
  2002年   112篇
  2001年   23篇
  2000年   14篇
  1999年   24篇
  1998年   50篇
  1997年   28篇
  1996年   27篇
  1995年   15篇
  1994年   29篇
  1993年   24篇
  1992年   10篇
  1991年   13篇
  1990年   9篇
  1989年   12篇
  1988年   10篇
  1987年   14篇
  1986年   12篇
  1985年   13篇
  1984年   9篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1978年   9篇
  1976年   4篇
  1974年   7篇
  1973年   3篇
  1971年   3篇
  1962年   3篇
排序方式: 共有2858条查询结果,搜索用时 0 毫秒
991.
Gene duplication is an important source of phenotypic change and adaptive evolution. We leverage a haploid hydatidiform mole to identify highly identical sequences missing from the reference genome, confirming that the cortical development gene Slit-Robo Rho GTPase-activating protein 2 (SRGAP2) duplicated three times exclusively in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ~3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D) ~2.4 and ~1 mya, respectively. Sequence and expression analyses show that SRGAP2C is the most likely duplicate to encode a functional protein and is among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel gene function-antagonizing parental SRGAP2 function-immediately "at birth" 2-3 mya, which is a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion.  相似文献   
992.
Here, we present results for DPA1 and DPB1 four-digit allele-level typing in a large (n = 5,944) sample of unrelated European American stem cell donors previously characterized for other class I and class II loci. Examination of genetic data for both chains of the DP heterodimer in the largest cohort to date, at the amino acid epitope, allele, genotype, and haplotype level, allows new insights into the functional units of selection and association for the DP heterodimer. The data in this study suggest that for the DPA1-DPB1 heterodimer, the unit of selection is the combined amino acid epitope contributed by both the DPA1 and DPB1 genes, rather than the allele, and that patterns of LD are driven primarily by dimer stability and conformation of the P1 pocket. This may help explain the differential pattern of allele frequency distribution observed for this locus relative to the other class II loci. These findings further support the notion that allele-level associations in disease and transplantation may not be the most important unit of analysis, and that they should be considered instead in the molecular context.  相似文献   
993.
Background aimsThe long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA).MethodsWe randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture.ResultsAn age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity.ConclusionsCryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34+ cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.  相似文献   
994.
The enzyme Necator americanus glutathione S-transferase 1 (Na-GST-1) belongs to a unique Nu class of GSTs and is a lead candidate antigen in a bivalent human hookworm vaccine. Here we describe the expression of Na-GST-1 in the yeast Pichia pastoris at the 20 L manufacturing scale and its purification process performed by three chromatographic steps, comprised of a Q Sepharose XL anion exchange column, followed by a Butyl Sepharose HP hydrophobic affinity column and a Superdex 75 size-exclusion column. Approximately 1.5 g of recombinant protein was recovered at an overall process yield of 51%, with a purity grade of 98% and the absence of detectable host cell protein. By mass spectrometry the recombinant protein exhibits a mass of 23,676Da, which closely matches the predicted molecular mass of the protein. The expression and purification methods described here are suitable for further scale-up product development and for its use to design formulation processes suitable to generate a vaccine for clinical testing.  相似文献   
995.
996.
Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis.  相似文献   
997.
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   
998.
Intertribal comparisons of genome synteny between phylogenetically distant genera in Rosaceae, such as Malus (apple) and Fragaria (strawberry), have previously been hampered by a lack of transferable markers that can be used as anchor points between genetic maps. The availability of conserved orthologous set (COS) markers recently developed for this family, coupled with the release of the Malus?×?domestica and Fragaria vesca draft genome sequences, provide new tools for comprehensive pairwise comparisons. The genetic mapping of 56 Rosaceae COS (RosCOS) markers revealed 21 regions of genomic synteny between apple and strawberry. Information concerning the location of RosCOS markers on 15 of 17 apple linkage groups (LG) and all seven LG of strawberry was used to assess the ancestral relationships between the two genera. Four differences in orientation of ancestral chromosome fragments on extant LG were identified in comparison with previous studies, as well as two potential insertions, two potential translocations, and two potential inversions. The set of orthologous markers developed for use in genetic mapping in Rosaceae, in combination with high-throughput analysis, will allow the exploration of chromosome evolution and refinement of ancestral relationships within the family, orientation, and anchoring of genome sequences as they become available and provide resources to develop markers for nonsequenced genomes within the family.  相似文献   
999.
1000.
ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号