首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6427篇
  免费   780篇
  国内免费   469篇
  2023年   73篇
  2022年   153篇
  2021年   287篇
  2020年   202篇
  2019年   310篇
  2018年   257篇
  2017年   228篇
  2016年   266篇
  2015年   357篇
  2014年   427篇
  2013年   487篇
  2012年   544篇
  2011年   502篇
  2010年   303篇
  2009年   256篇
  2008年   326篇
  2007年   268篇
  2006年   259篇
  2005年   206篇
  2004年   175篇
  2003年   183篇
  2002年   153篇
  2001年   130篇
  2000年   130篇
  1999年   106篇
  1998年   64篇
  1997年   39篇
  1996年   49篇
  1995年   41篇
  1994年   42篇
  1993年   30篇
  1992年   43篇
  1991年   57篇
  1990年   41篇
  1989年   46篇
  1988年   30篇
  1987年   37篇
  1986年   34篇
  1985年   33篇
  1984年   40篇
  1983年   38篇
  1982年   25篇
  1979年   26篇
  1977年   18篇
  1976年   23篇
  1975年   19篇
  1974年   26篇
  1973年   29篇
  1972年   20篇
  1971年   19篇
排序方式: 共有7676条查询结果,搜索用时 171 毫秒
151.
为研究水通道蛋白11基因(AQP11)在中华绒螯蟹(Eriocheir sinensis)生长蜕壳过程中的功能作用,采用RACE技术克隆获得中华绒螯蟹水通道蛋白11基因cDNA全长序列.该序列总长为1 746bp,5'端和3'端非编码区分别为463 bp和476 bp,开放阅读框为807 bp,推测编码268个氨基酸,预测分子量29.46 kDa,理论等电点为5.38.生物学信息分析表明,AQP11含有4个跨膜区(第62~84,第159~181,第194~216,第231~250)和2个NPV单元,属于稳定蛋白;同源性和进化树分析表明,中华绒螯蟹AQP11氨基酸序列与凡纳滨对虾(Litopenaeus vannamei)的同源性最高(82.0%),与凡纳滨对虾的聚为一支,与甲壳动物的亲缘关系最近.实时荧光定量PCR(RT-qPCR)的检测显示,AQP11基因在中华绒螯蟹各组织中均有表达,其中在肠道中表达量最高,其次是脑、肌肉和胸神经节,在肝胰腺、鳃和血中表达量最低.研究发现,AQP11基因在中华绒螯蟹肠道中的表达呈现,在蜕壳间期(C期)和蜕壳前期(D期)过程中表达量均较低,在蜕壳期(E期)表达量开始上升,蜕壳后期(AB期)表达量不变.AQP11基因在肌肉中的表达呈现,蜕壳间期(C期)表达量低,蜕壳前期(D期)表达量开始上升,蜕壳期(E期)达到峰值,随后到蜕壳后期(AB期)下降.研究结果表明,中华绒螯蟹AQP11基因在其蜕壳过程中发挥着重要的作用.  相似文献   
152.
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.  相似文献   
153.
Alfalfa (Medicago sativa L.) is an important forage crop worldwide. However, little is known about the effects of breeding status and different geographical populations on alfalfa improvement. Here, we sequenced 220 alfalfa core germplasms and determined that Chinese alfalfa cultivars form an independent group, as evidenced by comparisons of FST values between different subgroups, suggesting that geographical origin plays an important role in group differentiation. By tracing the influence of geographical regions on the genetic diversity of alfalfa varieties in China, we identified 350 common candidate genetic regions and 548 genes under selection. We also defined 165 loci associated with 24 important traits from genome-wide association studies. Of those, 17 genomic regions closely associated with a given phenotype were under selection, with the underlying haplotypes showing significant differences between subgroups of distinct geographical origins. Based on results from expression analysis and association mapping, we propose that 6-phosphogluconolactonase (MsPGL) and a gene encoding a protein with NHL domains (MsNHL) are critical candidate genes for root growth. In conclusion, our results provide valuable information for alfalfa improvement via molecular breeding.  相似文献   
154.
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.  相似文献   
155.
Landscape and Ecological Engineering - Juniperus sabina L. is a native evergreen conifer of the Mu Us Sandy Land. It has prostrating stems that can prevent sand shifting and is an important...  相似文献   
156.
Based on previous studies, 66 2-phenyl-4H-chromone derivatives containing amide and 1,3,4-oxadiazole moieties were prepared as potential telomerase inhibitors. The results showed most of the title compounds exhibited significantly inhibitory activity on telomerase. Among them, some compounds demonstrated the most potent telomerase inhibitory activity (IC50 < 1 µM), which was significantly superior to the staurosporine (IC50 = 6.41 µM). In addition, clear structure–activity relationships were summarised, indicating that the substitution of the methoxy group and the position, type and number of the substituents on the phenyl ring had significant effects on telomerase activity. Among them, compound A33 showed considerable inhibition against telomerase. Flow cytometric analysis showed that compound A33 could arrest MGC-803 cell cycle at G2/M phase and induce apoptosis in a concentration-dependent way. Meanwhile, Western blotting revealed that this compound could reduce the expression of dyskerin, which is a fragment of telomerase.  相似文献   
157.
158.
Free‐air CO2 enrichment (FACE) allows open‐air elevation of [CO2] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta‐analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2] by ca. 200 ppm caused a ca. 18% increase in yield under non‐stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non‐leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2]. A strong correlation of yield response under elevated [CO2] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co‐promoting sustainability and productivity under future elevated [CO2].  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号