首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26876篇
  免费   2318篇
  国内免费   2960篇
  32154篇
  2024年   110篇
  2023年   465篇
  2022年   1020篇
  2021年   1513篇
  2020年   1047篇
  2019年   1291篇
  2018年   1172篇
  2017年   810篇
  2016年   1135篇
  2015年   1695篇
  2014年   1975篇
  2013年   2063篇
  2012年   2528篇
  2011年   2257篇
  2010年   1473篇
  2009年   1297篇
  2008年   1466篇
  2007年   1290篇
  2006年   1124篇
  2005年   991篇
  2004年   893篇
  2003年   712篇
  2002年   583篇
  2001年   432篇
  2000年   370篇
  1999年   328篇
  1998年   227篇
  1997年   215篇
  1996年   199篇
  1995年   165篇
  1994年   143篇
  1993年   105篇
  1992年   167篇
  1991年   119篇
  1990年   100篇
  1989年   92篇
  1988年   73篇
  1987年   81篇
  1986年   70篇
  1985年   56篇
  1984年   52篇
  1983年   45篇
  1982年   30篇
  1981年   18篇
  1980年   16篇
  1979年   20篇
  1977年   17篇
  1976年   14篇
  1975年   12篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca2+ signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca2+ entry and sarcoplasmic endoplasmic reticulum Ca2+-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca2+ signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.  相似文献   
992.
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.  相似文献   
993.
994.
Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.  相似文献   
995.
996.
997.
The phylogeographical patterns and demographic history of mitochondrial DNA (cytochrome b, N = 327; D‐loop, N = 252) and nuclear DNA (IRBP gene, N = 235) haplotypes were studied for the Meriones meridianus complex in northern China, a desert‐dwelling gerbil species complex. The phylogenetic analyses, which were performed on the separate and combined (mitochondrial + nuclear) datasets, revealed two divergent clades (Clade A and Clade B) corresponding to distinct geographical regions. Clade A contained the haplotypes found mostly in individuals from the Tianshan Mountains area. Clade B contained haplotypes from populations located in other deserts in northern China. The divergence times indicated that the history of the M. meridianus complex was influenced by the uplift of the Tianshan Mountains and climate‐induced habitat fluctuations. In the Pleistocene, the expansion of forests and grasslands during interglacial period led to the isolation of the M. meridianus complex, which preferred to inhabit deserts. Hence, long geological isolation and the M. meridianus complex adaptation to local ecological conditions led to its genetic divergence. Clade A had long‐lasting demographic stability, most likely because the populations of this clade remained in a stable desert environment for a long time. However, the extension of other deserts and disappearance of palaeolakes during the last glacial period resulted in demographic expansion of Clade B. Furthermore, our genetic data indicated that two subspecies may exist within the M. meridianus complex. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 362–383.  相似文献   
998.
999.
The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance.  相似文献   
1000.
Chapio is a spring wheat developed by CIMMYT in Mexico by a breeding program that focused on multigenic resistances to leaf rust and stripe rust. A population consisting of 277 recombinant inbred lines (RILs) was developed by crossing Chapio with Avocet. The RILs were genotyped with DArT markers (137 randomly selected RILs) and bulked segregant analysis conducted to supplement the map with informative SSR markers. The final map consisted of 264 markers. Phenotyping against stripe rust was conducted for three seasons in Toluca, Mexico and at three sites over two seasons (total of four environments) in Sichuan Province, China. Significant loci across the two inter-continental regions included Lr34/Yr18 on 7DS, Sr2/Yr30 on 3BS, and a QTL on 3D. There were significant genotype × environment interactions with resistance gene Yr31 on 2BS being effective in most of the Toluca environments; however, a late incursion of a virulent pathotype in 2009 rendered this gene ineffective. This locus also had no effect in China. Conversely, a 5BL locus was only effective in the Chinese environments. There were also complex additive interactions. In the Mexican environments, Yr31 suppressed the additive effect of Yr30 and the 3D locus, but not of Lr34/Yr18, while in China, the 3D and 5BL loci were generally not additive with each other, but were additive when combined with other loci. These results indicate the importance of maintaining diverse, multi-genic resistances as Chapio had stable inter-continental resistance despite the fact that there were QTLs that were not effective in either one or the other region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号