首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30660篇
  免费   2544篇
  国内免费   3325篇
  36529篇
  2024年   118篇
  2023年   512篇
  2022年   1049篇
  2021年   1646篇
  2020年   1145篇
  2019年   1497篇
  2018年   1403篇
  2017年   950篇
  2016年   1383篇
  2015年   1955篇
  2014年   2350篇
  2013年   2426篇
  2012年   2888篇
  2011年   2573篇
  2010年   1678篇
  2009年   1568篇
  2008年   1763篇
  2007年   1570篇
  2006年   1331篇
  2005年   1148篇
  2004年   966篇
  2003年   856篇
  2002年   687篇
  2001年   464篇
  2000年   413篇
  1999年   386篇
  1998年   242篇
  1997年   225篇
  1996年   204篇
  1995年   171篇
  1994年   115篇
  1993年   93篇
  1992年   143篇
  1991年   99篇
  1990年   91篇
  1989年   65篇
  1988年   53篇
  1987年   53篇
  1986年   44篇
  1985年   57篇
  1984年   12篇
  1983年   21篇
  1982年   15篇
  1981年   16篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   8篇
  1975年   7篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
Basement membrane thickening, glomerular hypertrophy, and deposition of multiple extracellular matrix characterize the pathological basis of diabetic nephropathy (DN), a condition which ultimately leads to glomerular and renal interstitial fibrosis. Here, we identified a novel microRNA, miR-130b, and investigated its role and therapeutic efficacy in alleviating DN. Introduction of miR-130b dramatically increased cell growth and fibrosis in DN cells. We found that transforming growth factor (TGF)-β1 was a functional target of miR-130b in human glomerular mesangial cells (HMCs) and overexpression of miR-130b increased expressions of the downstream signaling molecules of TGF-β1, t-Smad2/3, p-Smad2/3, and SMAD4. An ectopic application of miR-130b increased messenger RNA and protein expressions of collagen type I (colI), colIV, and fibronectin, whose expression levels were correlated with the expression of miR-130b. Taken together, the findings of this study reveal that miR-130b in HMC cells plays an important role in fibrosis regulation and may thus be involved with the pathogenesis of DN. Therefore, miR-130b may serve as a novel therapeutic target for the prevention and the treatment of DN.  相似文献   
962.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   
963.
964.
965.
966.
Osteosarcoma (OS) is the most common highly malignant bone tumor in teens. Vasculogenic mimicry (VM) is defined as de novo extracellular matrix-rich vascular-like networks formed by highly aggressive tumor cells. We previously reported the presence of VM and it is an unfavorable prognostic factor in OS patients. Long noncoding RNAs (lncRNAs) are aberrantly expressed in OS and involved in cancer cell VM. However, lncRNAs in VM formation of OS have not been investigated. We, therefore, profiled the expression of lncRNAs in highly aggressive OS cell line 143B compared with its parental poorly aggressive cell line HOS. The differentially expressed (DE) lncRNAs and messenger RNA (mRNAs) were subjected to constructed lncRNA-mRNA coexpressed network. The top-ranked hub gene lncRNA n340532 knockdown 143B cells were used for in vitro and in vivo VM assays. The annotation of DE lncRNAs was performed according to the coexpressed mRNAs by Gene Ontology and pathway analysis. A total of 1360 DE lncRNAs and 1353 DE mRNAs were screened out. lncRNA MALAT1 and FTX, which have known functions related to VM formation and tumorigenesis were identified in our data. The coexpression network composed of 226 lncRNAs and 118 mRNAs in which lncRNA n340532 had the highest degree number. lncRNA n340532 knockdown reduced VM formation in vitro. The suppression of n340532 also exhibited potent anti-VM and antimetastasis effect in vivo, suggesting its potential role in OS VM and metastasis. Furthermore, n340532 coexpressed with 10 upregulation mRNAs and 3 downregulation mRNAs. The enriched transforming growth factor-β signaling pathway, angiogenesis and so forth were targeted by those coexpressed mRNAs, implying n340532 may facilitate VM formation in OS through these pathways and gene functions. Our findings provide evidence for the potential role of lncRNAs in VM formation of OS that could be used in the clinic for anti-VM therapy in OS.  相似文献   
967.
The function of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in cancer is background dependent and may be involved in the initial step of active DNA demethylation, while there is little research to decipher the role of TET1 in DNA methylation-sensitive colon cancer. Downregulated TET1 expression assayed by quantitative real-time PCR (qRT-PCR) was observed in both colon cancer samples and cancer cell lines of HT29, HCT116, and SW48. Such downregulation could promote colon cancer cells proliferation as indicated by the fact that shTET1 could increase the viability of HT29 and HCT116 cells determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and cell count assay accompanied with upregulation of β-catenin (CTNNB1) and WNT luciferase activity, which was further confirmed as shTET1 could increase the tumor volume and tumor weight, and decrease the body weight in HT29 cells inoculated BALB/C nude mice. The CTNNB1 transfection could rescue the cell growth diminished by normal expression of TET1. shTET1 could promote axis inhibition protein1 (AXIN1) expression and the cell proliferation effect induced by TET1 short hairpin RNA was attenuated by co-inhibition of AXIN1. All of these indicate that TET1 can suppress colon cancer proliferation and the inhibition of the β-catenin pathway is AXIN1 dependent.  相似文献   
968.
Wnt7a is a member of the Wnt family and has been reported to be involved in the carcinogenesis and progression of many types of human cancer. However, little is known about Wnt7a expression and function in gastric cancer (GC). In the present study, Wnt7a expression in GC tissues and cells was investigated, the correlation between Wnt7a expression and the prognosis was also examined. The effects of Wnt7a on proliferation, invasion, and metastasis were evaluated in vitro and in vivo. Furthermore, the expression of epithelial-mesenchymal transition (EMT) markers and hypermethylation of the Wnt7a promoter were both detected. Wnt7a was downregulated in GC and its expression was associated with poor prognosis of patients with GC. Moreover, upregulation of Wnt7a significantly suppressed the growth, invasion, and metastasis abilities of GC cells in vitro and in vivo. Mechanistically, Wnt7a was found to inhibit EMT process of GC cells. In addition, the reducing expression of Wnt7a was due to methylation of 5′-CpG island within the promoter. Furthermore, the tumor suppressor role of Wnt7a is independent of canonical Wnt/β-catenin signaling in GC cells. In conclusion, our findings demonstrated that Wnt7a could be used as a potential diagnostic marker and target for GC management.  相似文献   
969.
Long noncoding RNAs (lncRNAs) are key players in the development and progression of human cancers. The lncRNA PCAT-1 has been shown to be upregulated in human non–small cell lung cancer (NSCLC); however, its role and molecular mechanisms in NSCLC cell progression remain unclear. Here, we found that the higher expression of PCAT-1 led to a significantly poorer survival time, and multivariate analysis revealed that PCAT-1 was an independent risk factor of prognosis in NSCLC. Furthermore, we also found that the knockdown of PCAT-1 remarkably suppressed cell growth by inducing cell cycle arrest and apoptosis promotion in NSCLC cells. Moreover, the bioinformatics analysis and luciferase reporter assay revealed that PCAT-1 directly bound to the miR-149-5p, which has been reported to act as a tumor suppressor in diverse cancers. In addition, our results confirmed that the tumor-promoting effects of PCAT-1 in NSCLC cells are at least partly through negative modulation of miR-149-5p. Finally, mechanistic investigations showed that PCAT-1 upregulated the expression of miR-149-5p target gene leucine-rich repeats and immunoglobulin (Ig)-like domains 2 (LRIG2) through competitively “spongeing” miR-149-5p. Therefore, we concluded that PCAT-1 may promote the development of NSCLC through the miR-149-5p/LRIG2 axis.  相似文献   
970.
Insulin resistance is associated with impaired glucose uptake and altered protein kinase B (Akt) signaling. Previous studies have suggested asymmetric dimethylarginine (ADMA) and inflammation are two distinguish factors that correlate with insulin resistance (IR). How ADMA and inflammation factors interact and synchronize in the regulation of IR in liver remain to be elucidated. In this study, we systematically investigated whether ADMA is involved in IR using primary hepatocytes, if yes, by via which molecular mechanism. Our results demonstrated that ADMA inhibits insulin sensitivity in a concentration-dependent manner by activating inflammation factors tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 in primary hepatocytes. Further analysis revealed that mitogen-activated protein kinase (MAPK) signaling pathway act downstream of ADMA and inflammation factors, and inhibition of MAPK pathway rescued the IR. Furthermore, metformin effects has been found which could reverse ADMA-induced IR by suppressing MAPK signaling pathway. To our knowledge, we, for the first time, unveiled the complicated regulatory network and interactions among ADMA, inflammation, and MAPK signaling pathway, which advanced current research on the development and regulation of IR in liver. This study also certainly provided novel insights on comprehensive diagonistics roles of ADMA as a potential biomarker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号