首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12359篇
  免费   1239篇
  国内免费   2144篇
  2024年   58篇
  2023年   250篇
  2022年   512篇
  2021年   779篇
  2020年   605篇
  2019年   742篇
  2018年   640篇
  2017年   416篇
  2016年   600篇
  2015年   899篇
  2014年   1070篇
  2013年   1043篇
  2012年   1279篇
  2011年   1113篇
  2010年   751篇
  2009年   664篇
  2008年   752篇
  2007年   621篇
  2006年   560篇
  2005年   484篇
  2004年   449篇
  2003年   353篇
  2002年   264篇
  2001年   135篇
  2000年   120篇
  1999年   101篇
  1998年   81篇
  1997年   71篇
  1996年   52篇
  1995年   57篇
  1994年   33篇
  1993年   26篇
  1992年   34篇
  1991年   17篇
  1990年   23篇
  1989年   16篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1966年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 721 毫秒
961.
962.
Human enterovirus 71 (EV71) infection has emerged as a major threat to children; however, no effective antiviral treatment or vaccine is currently available. Antibody-based treatment shows promises to control this growing public health problem of EV71 infection, and a few potent monoclonal antibodies (mAbs) targeting viral capsid protein have been well described. Here, we generated an EV71-specific mouse mAb 2G8 that conferred full protection against lethal EV71 challenge in a suckling mouse model. 2G8 belonged to IgM isotype and neutralized EV71 at the attachment stage. Biochemical assays mapped the binding epitope of 2G8 to the SP70 peptide, which spanning amino acid residues 208–222 on the VP1 protein. Alanine scanning mutagenesis defined the essential roles of multiple residues, including Y208, T210, G212, K215, K218, L220, E221, and Y222, for 2G8 binding. Then, a panel of single mutation was individually introduced into the EV71 infectious clone by reverse genetics, and three mutant viruses, K215A, K218A, and L220A, were successfully recovered and characterized. Biochemical and neutralization assays revealed that K218A mutant partially escaped 2G8 neutralization, while L220A completely abolished 2G8 binding and neutralization. In particular, neutralization assays with human sera demonstrated that K218A and L220A substitutions are also critical for antibody neutralization in natural infection population. These findings not only generate a protective mAb candidate with therapeutic potential but also provide insights into antibody-mediated EV71 neutralization mechanism.  相似文献   
963.
964.
965.
966.
Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land.Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.  相似文献   
967.
968.
969.
In addition to contributing to the coloration of plant organs and their defense against herbivores, the consumption of anthocyanins in the human diet has a number of health benefits. Crabapple (Malus sp.) represents a valuable experimental model system to research the mechanisms and regulation of anthocyanin accumulation, in part due to the often vivid and varied petal and leaf coloration that is exhibited by various cultivars. The enzyme anthocyanidin synthase (ANS) plays a pivotal role in anthocyanin biosynthesis; however, the relationship between ANS expression and petal pigmentation has yet to be established in crabapple. To illuminate the mechanism of anthocyanin accumulation in crabapple petals, we evaluated the expression of two crabapple ANS allelic genes (McANS-1 and McANS-2) and the levels of anthocyanins in petals from cultivars with dark red (‘Royalty’) and white (‘Flame’) petals, as well as another (‘Radiant’) whose petals have an intermediate pink color. We determined that the expression of McANS in the three cultivars correlated with the variation of anthocyanin accumulation during different petal developmental stages. Furthermore, transgenic tobacco plants constitutively overexpressing one of the two McANS genes, McANS-1, had showed elevated anthocyanin accumulation and a deeper red coloration in their petals than those from untransformed control lines. In conclusion, we propose that McANS are responsible for anthocyanin accumulation during petal coloration in different crabapple cultivars.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号