首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16835篇
  免费   1540篇
  国内免费   2436篇
  2024年   81篇
  2023年   341篇
  2022年   696篇
  2021年   998篇
  2020年   746篇
  2019年   910篇
  2018年   811篇
  2017年   547篇
  2016年   784篇
  2015年   1136篇
  2014年   1388篇
  2013年   1389篇
  2012年   1663篇
  2011年   1441篇
  2010年   967篇
  2009年   869篇
  2008年   976篇
  2007年   777篇
  2006年   712篇
  2005年   636篇
  2004年   595篇
  2003年   494篇
  2002年   360篇
  2001年   243篇
  2000年   199篇
  1999年   192篇
  1998年   126篇
  1997年   102篇
  1996年   85篇
  1995年   89篇
  1994年   62篇
  1993年   42篇
  1992年   62篇
  1991年   39篇
  1990年   53篇
  1989年   22篇
  1988年   27篇
  1987年   22篇
  1986年   15篇
  1985年   14篇
  1984年   14篇
  1983年   12篇
  1982年   13篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1975年   9篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
133.
Acyltransferase (AT)-less type I polyketide synthases (PKSs) produce complex natural products due to the presence of many unique tailoring enzymes. The 3-hydroxy-3-methylglutaryl coenzyme A synthases (HCSs) are responsible for β-alkylation of the growing polyketide intermediates in AT-less type I PKSs. In this study, we discovered a large group of HCSs, closely associated with the characterized and orphan AT-less type I PKSs through in silico genome mining, sequence and genome neighbourhood network analyses. Using HCS-based probes, the survey of 1207 in-house strains and 18 soil samples from different geographic locations revealed the vast diversity of HCS-containing AT-less type I PKSs. The presence of HCSs in many AT-less type I PKSs suggests their co-evolutionary relationship. This study provides a new probe to study the abundance and diversity of AT-less type I PKSs in the environment and microbial strain collections. Our study should inspire future efforts to discover new polyketide natural products from AT-less type I PKSs.  相似文献   
134.
Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.  相似文献   
135.
136.
137.
138.
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein–protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1–β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1–β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.  相似文献   
139.
Molluscicidal activity of B-2 (sodium 2,5-dichloro-4-bromophenol; called as Phebrol and registered in WHO as OMS 3012) was evaluated in a laboratory and the field trials were performed in two different localities in Yueyang city, China, for control of Oncomelania hupensis. B-2 was effective against O. hupensis both in the laboratory and in the field. A dosage of 50 g/m2 in 10% granular form or 20 ml/m2 in 25% liquid form of B-2 would be recommendable as a standard mollusciciding dose for control of O. hupensis.  相似文献   
140.
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2‐517), which carries the male sterility (ms1035) gene, and its wild‐type (VF‐11) using isobaric tags for relative and absolute quantification‐based strategy. A total of 8272 proteins are quantified in the 2–517 and VF‐11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω‐carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real‐time PCR (qRT‐PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号