首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   193篇
  国内免费   230篇
  2024年   8篇
  2023年   42篇
  2022年   97篇
  2021年   137篇
  2020年   85篇
  2019年   133篇
  2018年   123篇
  2017年   85篇
  2016年   99篇
  2015年   152篇
  2014年   154篇
  2013年   145篇
  2012年   210篇
  2011年   171篇
  2010年   106篇
  2009年   90篇
  2008年   110篇
  2007年   90篇
  2006年   78篇
  2005年   73篇
  2004年   42篇
  2003年   49篇
  2002年   56篇
  2001年   36篇
  2000年   34篇
  1999年   48篇
  1998年   19篇
  1997年   34篇
  1996年   21篇
  1995年   30篇
  1994年   30篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   20篇
  1989年   15篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2742条查询结果,搜索用时 156 毫秒
51.
52.
Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration-resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.  相似文献   
53.
54.
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6–5.2; peak = 34–35 cM [66–67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain—the gold standard strain in biomedical research.  相似文献   
55.
Methane is a potent greenhouse gas; methane production and consumption within seafloor sediments has generated intense interest. Anaerobic oxidation of methane (AOM) and methanogenesis (MOG) primarily occur at the depth of the sulfate–methane transition zone or underlying sediment respectively. Methanogenesis can also occur in the sulfate-reducing sediments through the utilization of non-competitive methylated compounds; however, the occurrence and importance of this process are not fully understood. Here, we combined a variety of data, including geochemical measurements, rate measurements and molecular analyses to demonstrate the presence of a cryptic methane cycle in sulfate-reducing sediments from the continental shelf of the northern South China Sea. The abundance of methanogenic substrates as well as the high MOG rates from methylated compounds indicated that methylotrophic methanogenesis was the dominant methanogenic pathway; this conclusion was further supported by the presence of the methylotrophic genus Methanococcoides. High potential rates of AOM were observed in the sediments, indicating that methane produced in situ could be oxidized simultaneously by AOM, presumably by ANME-2a/b as indicated by 16S rRNA gene analysis. A significant correlation between the relative abundance of methanogens and methanotrophs was observed over sediment depth, indicating that methylotrophic methanogenesis could potentially fuel AOM in this environment. In addition, higher potential rates of AOM than sulfate reduction rates at in situ methane conditions were observed, making alternative electron acceptors important to support AOM in sulfate-reducing sediment. AOM rates were stimulated by the addition of Fe/Mn oxides, suggesting AOM could be partially coupled to metal oxide reduction. These results suggest that methyl-compounds driven methane production drives a cryptic methane cycling and fuels AOM coupled to the reduction of sulfate and other electron acceptors.  相似文献   
56.
Ovarian cancer (OC) is a common reason for gynecologic cancer death. Standard treatments of OC consist of surgery and chemotherapy. However, chemoresistance should be considered. Exosomal miR-21-5p has been shown to regulate the chemosensitivity of cancer cells through regulating pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1). However, the role of miR-21-5p/PDHA1 in OC is unclear. The levels of miR-21-5p and PDHA1 in clinical samples and cells were investigated. Exosomes derived from SKOV3/cisplatin (SKOV3/DDP) cells (DDP-Exos) were isolated and used to treat SKOV3 cells to test DDP-Exos effects on SKOV3 cells. Extracellular acidification rate and oxygen consumption rate were tested with a Seahorse analyzer. Cell apoptosis was analyzed by a flow cytometer. PDHA1 was overexpressed and miR-21-5p was silenced in SKOV3 cells to study the underlying mechanism of miR-21-5p in OC. Quantitative real-time PCR and immunoblots were applied to measure gene expression at mRNA and protein levels. The levels of PDHA1 in DDP-resistant SKOV3 or tumor tissues were significantly decreased while the levels of miR-21-5p were remarkably upregulated. miR-21-5p in DDP-Exos was sharply increased compared to that of Exos. Data also indicated that DDP-Exos treatment suppressed the sensitivity of SKOV3 cells to DDP and promoted cell viability and glycolysis of SKOV3 cells through inhibiting PDHA1 by exosomal miR-21-5p. miR-21-5p derived from DDP-resistant SKOV3 OC cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Our data highlights the important role of miR-21-5p/PDHA1 axis in OC and sheds light on new therapeutic development.  相似文献   
57.
58.
Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.  相似文献   
59.
The xynHB gene, encoding alkaline xylanase was cloned from Bacillus pumilus by a shot-gun method. The gene was cloned into vector pHBM905A, and expressed in Pichia pastoris GS115. Xylanase-secreting transformants were selected on plates containing RBB-xylan. Enzymatic activity in the culture supernatants was up to 644?U?mL?1 and the optimal secretion time was 4 days at 25°C. SDS-PAGE showed two bands, of 32.2?kDa and 29.6?kDa, both larger than the predicted mass of 22.4?kDa based on its amino acid sequence. Zymogram analysis demonstrated that the enzyme in both bands could hydrolyze xylan. Deglycosylation by endoglycosidase H revealed that both were derived from the same protein but contain different extents of glycosylation (30 and 25%). The optimal pH and temperature of the enzyme was pH6–9 and 50°C, respectively.  相似文献   
60.
The most remarkable developmental event during metamorphosis in flatfish (Pleuronectiformes) is the migration of their eyes; one eye migrates upwards, then passes through the dorsal midline, and finally stops on the other side. In this study, we determined that the ratio of the movable eye diameter on the transverse axis (DTA) to that on the vertical axis (DVA) increased during the metamorphosis of Paralichthys olivaceus and Solea senegalensis. Based on the recently proposed hypothesis that eye migration of flatfishes is caused by the push force from the proliferated tissue of the suborbital region, we postulated that the eye shape change is a result of the same force. Measurements of eye proportions in 20 species of adult flatfishes revealed that the DTA is constantly larger than the DVA, suggesting that the mechanisms of eye shape change and eye migration driven by proliferating cells in the suborbital tissue are universal among flatfishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号