首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   138篇
  国内免费   99篇
  1671篇
  2024年   6篇
  2023年   16篇
  2022年   47篇
  2021年   75篇
  2020年   39篇
  2019年   60篇
  2018年   39篇
  2017年   28篇
  2016年   48篇
  2015年   87篇
  2014年   104篇
  2013年   98篇
  2012年   128篇
  2011年   120篇
  2010年   61篇
  2009年   53篇
  2008年   62篇
  2007年   68篇
  2006年   61篇
  2005年   44篇
  2004年   41篇
  2003年   58篇
  2002年   39篇
  2001年   31篇
  2000年   27篇
  1999年   22篇
  1998年   15篇
  1997年   15篇
  1996年   11篇
  1995年   16篇
  1994年   13篇
  1993年   12篇
  1992年   22篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   14篇
  1987年   8篇
  1985年   7篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1970年   2篇
排序方式: 共有1671条查询结果,搜索用时 15 毫秒
31.
Since 1985, originally forested mountainous areas of China have been allowed to return to their natural state after years of exploitation including agriculture, development, and logging. The reforms began earlier in less accessible locations, so that today the successional process is more advanced there. The vegetation in Luquan, Qiongzhusi, and Xishan near Kunming, central Yunnan, exhibits, in a limited area, a range of stages of plant succession that are widely encountered throughout the broader region, and thus affords a special opportunity for a comprehensive study. We analyzed the successional sequence of these various plant communities. They ranged from pioneer coniferous and/or pioneer deciduous broad-leaved stands to pre-mature semi-humid evergreen broad-leaved stands, through mixed coniferous and broad-leaved or mixed deciduous and evergreen broad-leaved stands. The succession proceeded from pioneer coniferous Pinus and Keteleeria, and deciduous Platycarya and Alnus, to late-successional evergreen broad-leaved Cyclobalanopsis and Castanopsis. Two regeneration types of woody species in either the early successional (15–50 years), the mid-successional (40–80 years), or the late-successional (80–180 years) stage were classified. Relatively high species diversity was found in the seral phase at the three study sites. The late-successional stage was commonest where human disturbance was least evident. Poor soil chemical properties under pioneer Pinus were seen as a limitation to plant growth, while the abundance of Alnus at the early stage led to an improved level of organic matter and nitrogen.  相似文献   
32.

Aims

This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes.

Methods

Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay.

Results

MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002.

Conclusions

These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.  相似文献   
33.
Proteinase-activated receptor 2 (Par2, F2rl1, also designated PAR-2 or PAR2) is prominently expressed in the intestine and has been suggested as a mediator of inflammatory, mitogenic and fibrogenic responses to injury. Mast cell proteinases and pancreatic trypsin, both of which have been shown to affect the intestinal radiation response, are the major biological activators of Par2. Conventional Sprague-Dawley rats, mast cell-deficient rats, and rats in which pancreatic exocrine secretion was blocked pharmacologically by octreotide underwent localized irradiation of a 4-cm loop of small bowel. Radiation injury was assessed 2 weeks after irradiation (early, inflammatory phase) and 26 weeks after irradiation (chronic, fibrotic phase). Par2 expression and activation were assessed by in situ hybridization and immunohistochemistry, using antibodies that distinguished between total (preactivated and activated) Par2 and preactivated Par2. Compared to unirradiated intestine, irradiated intestine exhibited increased Par2 expression, particularly in areas of myofibroblast proliferation and collagen accumulation, after both single-dose and fractionated irradiation. The majority of Par2 expressed in fibrotic areas was activated. Postirradiation Par2 overexpression was greatly attenuated in both mast cell-deficient and octreotide-treated rats. The severity of acute mucosal injury did not affect postirradiation Par2 expression. Mast cells and pancreatic proteinases may exert their fibro-proliferative effects partly through activation of Par2. Par2 may be a potential target for modulating the intestinal radiation response, particularly delayed intestinal wall fibrosis.  相似文献   
34.
A genetic analysis of neural progenitor differentiation   总被引:26,自引:0,他引:26  
Genetic mechanisms regulating CNS progenitor function and differentiation are not well understood. We have used microarrays derived from a representational difference analysis (RDA) subtraction in a heterogeneous stem cell culture system to systematically study the gene expression patterns of CNS progenitors. This analysis identified both known and novel genes enriched in progenitor cultures. In situ hybridization in a subset of clones demonstrated that many of these genes were expressed preferentially in germinal zones, some showing distinct ventricular or subventricular zone labeling. Several genes were also enriched in hematopoietic stem cells, suggesting an overlap of gene expression in neural and hematopoietic progenitors. This combination of methods demonstrates the power of using custom microarrays derived from RDA-subtracted libraries for both gene discovery and gene expression analysis in the central nervous system.  相似文献   
35.
During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C.?elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C.?elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains?a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions.  相似文献   
36.
Sun HY  Ou NY  Wang SW  Liu WC  Cheng TF  Shr SJ  Sun KT  Chang TT  Young KC 《PloS one》2011,6(9):e25530
Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd) nucleotide of the 5'UTR with the 14(th), 41(st), 76(th), 110(th), 211(th) and 212(th) residues of NS2 and with the 71(st), 175(th) and 621(st) residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR??? and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR??? depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR???-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR??? co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.  相似文献   
37.
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.  相似文献   
38.
The identification of the genes regulating neural progenitor cell (NPC) functions is of great importance to developmental neuroscience and neural repair. Previously, we combined genetic subtraction and microarray analysis to identify genes enriched in neural progenitor cultures. Here, we apply a strategy to further stratify the neural progenitor genes. In situ hybridization demonstrates expression in the central nervous system germinal zones of 54 clones so identified, making them highly relevant for study in brain and neural progenitor development. Using microarray analysis we find 73 genes enriched in three neural stem cell (NSC)-containing populations generated under different conditions. We use the custom microarray to identify 38 "stemness" genes, with enriched expression in the three NSC conditions and present in both embryonic stem cells and hematopoietic stem cells. However, comparison of expression profiles from these stem cell populations indicates that while there is shared gene expression, the amount of genetic overlap is no more than what would be expected by chance, indicating that different stem cells have largely different gene expression patterns. Taken together, these studies identify many genes not previously associated with neural progenitor cell biology and also provide a rational scheme for stratification of microarray data for functional analysis.  相似文献   
39.
40.
The Salmoniform whole‐genome duplication is hypothesized to have facilitated the evolution of anadromy, but little is known about the contribution of paralogs from this event to the physiological performance traits required for anadromy, such as salinity tolerance. Here, we determined when two candidate, salinity‐responsive paralogs of the Na+, K+ ATPase α subunit (α1a and α1b) evolved and studied their evolutionary trajectories and tissue‐specific expression patterns. We found that these paralogs arose during a small‐scale duplication event prior to the Salmoniform, but after the teleost, whole‐genome duplication. The ‘freshwater paralog’ (α1a) is primarily expressed in the gills of Salmoniformes and an unduplicated freshwater sister species (Esox lucius) and experienced positive selection in the freshwater ancestor of Salmoniformes and Esociformes. Contrary to our predictions, the ‘saltwater paralog’ (α1b), which is more widely expressed than α1a, did not experience positive selection during the evolution of anadromy in the Coregoninae and Salmonine. To determine whether parallel mutations in Na+, K+ ATPase α1 may contribute to salinity tolerance in other fishes, we studied independently evolved salinity‐responsive Na+, K+ ATPase α1 paralogs in Anabas testudineus and Oreochromis mossambicus. We found that a quarter of the mutations occurring between salmonid α1a and α1b in functionally important sites also evolved in parallel in at least one of these species. Together, these data argue that paralogs contributing to salinity tolerance evolved prior to the Salmoniform whole‐genome duplication and that strong selection and/or functional constraints have led to parallel evolution in salinity‐responsive Na+, K+ ATPase α1 paralogs in fishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号