首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   138篇
  国内免费   99篇
  2024年   6篇
  2023年   16篇
  2022年   47篇
  2021年   75篇
  2020年   39篇
  2019年   60篇
  2018年   39篇
  2017年   28篇
  2016年   48篇
  2015年   87篇
  2014年   104篇
  2013年   98篇
  2012年   128篇
  2011年   120篇
  2010年   61篇
  2009年   53篇
  2008年   62篇
  2007年   68篇
  2006年   61篇
  2005年   44篇
  2004年   41篇
  2003年   58篇
  2002年   39篇
  2001年   31篇
  2000年   27篇
  1999年   22篇
  1998年   15篇
  1997年   15篇
  1996年   11篇
  1995年   16篇
  1994年   13篇
  1993年   12篇
  1992年   22篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   14篇
  1987年   8篇
  1985年   7篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1970年   2篇
排序方式: 共有1671条查询结果,搜索用时 281 毫秒
161.
Hepatitis C virus (HCV) is a major cause of viral hepatitis that can progress to hepatic fibrosis, steatosis, hepatocellular carcinoma, and liver failure. HCV infection is characterized by a systemic oxidative stress that is most likely caused by a combination of chronic inflammation, iron overload, liver damage, and proteins encoded by HCV. The increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development and progression of hepatic and extrahepatic complications of HCV infection. This review discusses the possible mechanisms of HCV-induced oxidative stress and its role in HCV pathogenesis.  相似文献   
162.
Biallelic germline mutations of MUTYH—a gene encoding a base excision repair protein—are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of risk. As the MUTYH protein interacts with the mismatch repair (MMR) system, we hypothesised that the combination of a monoallelic MUTYH mutation with an MMR gene mutation increases cancer risk. We therefore investigated the prevalence of monoallelic MUTYH mutations in carriers of a germline MMR mutation: 40 carriers of a truncating mutation (group I) and 36 of a missense mutation (group II). These patients had been diagnosed with either colorectal or endometrial cancer. We compared their MUTYH mutation frequencies with those observed in a group of 134 Dutch colorectal and endometrial cancer patients without an MMR gene mutation (0.7%) and those reported for Caucasian controls (1.5%). In group I one monoallelic MUTYH mutation was found (2.5%). In group II five monoallelic germline MUTYH mutations were found (14%), four of them in MSH6 missense mutation carriers (20%). Of all patients with an MMR gene mutation, only those with a missense mutation showed a significantly higher frequency of (monoallelic) MUTYH mutations than the Dutch cancer patients without MMR gene mutations (P=0.002) and the published controls (P=0.001). These results warrant further study to test the hypothesis of mutations in MMR genes (in particular MSH6) and MUTYH acting together to increase cancer risk.  相似文献   
163.

Background  

More and more disordered regions have been discovered in protein sequences, and many of them are found to be functionally significant. Previous studies reveal that disordered regions of a protein can be predicted by its primary structure, the amino acid sequence. One observation that has been widely accepted is that ordered regions usually have compositional bias toward hydrophobic amino acids, and disordered regions are toward charged amino acids. Recent studies further show that employing evolutionary information such as position specific scoring matrices (PSSMs) improves the prediction accuracy of protein disorder. As more and more machine learning techniques have been introduced to protein disorder detection, extracting more useful features with biological insights attracts more attention.  相似文献   
164.
MK 886, an arachidonic acid-related analog which inhibits the enzyme, 5-lipoxygenase by an indirect mechanism involving the 5-lipoxygenase activating protein, rapidly increased U937 cytosol Ca(2+), much of which localized around the cell nuclei. Five-lipoxygenase activity was not directly involved since the direct redox-dependent 5-LPOx inhibitor, SC-41661A did not increase Ca(2+). U937 cells subsequently undergo classic type 1 programmed cell death. At least initially the ionized calcium originates from internal stores. Coincident with the rise in U937 ionized calcium, MK 886 rapidly increased reactive oxygen species and reduced mitochondrial membrane potential, as judged by several fluorescent probes. The Ca(2+) response of myeloid leukemia-derived HL-60 cells to MK 886 was similar and both cell lines express Bcl-2 protein. Bcl-2-negative Panc-1 and PC-3 cells did not respond to MK 886 with a Ca(2+) signal but did develop oxidative stress and a decline in mitochondrial membrane potential; these events are thought to contribute to the inhibition of cell proliferation and induction of a type 2 PCD. In addition to its marked inhibition of Bcl-2 mRNA synthesis, an interesting hypothesis is that MK 886, serving as a low molecular weight ligand, either by direct or indirect inhibition of U937 Bcl-2 protein function, possibly related to an ion channel activity, alters the distribution of intracellular, possibly nuclear Ca(2+), thereby promoting the development of type 1 programmed cell death.  相似文献   
165.
166.
Cell death genes are essential for apoptosis and other cellular events, but their nonapoptotic functions are not well understood. The midbody is an important cytokinetic structure required for daughter cell abscission, but its fate after cell division remains elusive in metazoans. In this paper, we show through live-imaging analysis that midbodies generated by Q cell divisions in Caenorhabditis elegans were released to the extracellular space after abscission and subsequently internalized and degraded by the phagocyte that digests apoptotic Q cell corpses. We further show that midbody degradation is defective in apoptotic cell engulfment mutants. Externalized phosphatidylserine (PS), an engulfment signal for corpse phagocytosis, exists on the outer surface of the midbody, and inhibiting PS signaling delayed midbody clearance. Thus, our findings uncover a novel function of cell death genes in midbody internalization and degradation after cell division.  相似文献   
167.
Wang F  Liu S  Wu S  Zhu Q  Ou G  Liu C  Wang Y  Liao Y  Sun Z 《Cellular immunology》2012,272(2):251-258
TREM-1 is a recently discovered receptor expressed on neutrophils and macrophages. Blocking of TREM-1 signaling improves the survival of mice with bacterial sepsis. However, the precise mechanism by which TREM-1 modulates the inflammatory responses is poorly defined. In this study, we investigated the role of TREM-1 in Pseudomonas aeruginosa-induced peritonitis. Our results showed that TREM-1 was not expressed on lymphocytes but emerged on the cell surface of neutrophils and peritoneal macrophages. Blockade of TREM-1 signaling significantly prolonged survival of mice with P. aeruginosa-induced peritonitis. However, blocking TREM-1 signaling had no effect on macrophage phagocytosis in vitro. Interestingly, the expression of the costimulatory molecules CD40 and CD86 on macrophages was significantly decreased after blocking TREM-1 signaling. Furthermore, interfering with TREM-1 engagement led to significant reduction of pro-inflammatory mediators such as IL-1, TNF-α, MCP-1 and IFN-γ. Therefore, our results showed that TREM-1 could be a potential therapeutic target for bacterial sepsis.  相似文献   
168.
169.
In order to explore the associations between trace elements in dietary intake and the other three biological media (blood, urine, or feces) and inter-element interactions among the latter, we simultaneously collected 72-h diet duplicates, whole blood, and 72-h urine and feces from 120 free-living healthy males in China. Correlations among the toxic (cadmium [Cd], lead [Pb]), and nutritionally essential (zinc [Zn], copper [Cu], iron [Fe], manganese [Mn], selenium [Se], iodine [I]) elements were evaluated using Spearman rank correlation analysis based on analytical data determined by inductively coupled plasma-mass spectrometry. Dietary Cd intakes were highly correlated with the fecal Cd and blood Cd levels. Inverse correlations were found for Fe–Cd and Fe–Pb in both diet versus blood and diet versus feces. Cd–Zn and Cd–Se were significantly directly correlated in the urine and feces. Cd–Se and Pb–Se were negatively correlated in blood. In addition, there existed an extremely significant association between urinary Se and urinary I. Moreover, the other two highly direct correlations were found for Se–Fe and for I–Fe in urine. Improved knowledge regarding their mutual associations is considered to be of fundamental importance to understand more the complex interrelationships in trace element metabolism.  相似文献   
170.
In order to study functional gene expression in Streptomyces coelicolor, a mini-transposon encoding the apramycin resistance gene aac(3)IV within its inverted repeat (IR) boundaries was constructed based on IS204, which was previously identified in the genome of Nocardia asteroides YP21. The mini-transposon and IS204 transposase gene were then put on a kanamycin-resistant conjugative plasmid pDZY101 that can only replicate in Escherichia coli. After mating with S. coelicolor A3(2) M145, resistant colonies arose efficiently on both apramycin and kanamycin plates. Plasmid rescue indicated that entire plasmids were inserted into the M145 genome with cleavage at an inverted repeat junction formed by the right inverted repeat (IRR) and the last 18 bp of the transposase gene, while the left inverted repeat (IRL) was untouched. Southern blot analysis of the mutants using an aac(3)IV gene probe showed that transposition of plasmid pDZY101 was genetically stable, with a single-copy insertion within the S. coelicolor M145 genome. Several mutagenesis libraries of S. coelicolor M145 were constructed using plasmid pDZY101 derivatives and the transposon insertion site was determined. The correlation between novel mutant phenotypes and previously uncharacterized genes was established and these transposon locations were widely scattered around the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号