首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9424篇
  免费   691篇
  国内免费   557篇
  10672篇
  2024年   24篇
  2023年   111篇
  2022年   267篇
  2021年   401篇
  2020年   272篇
  2019年   306篇
  2018年   323篇
  2017年   271篇
  2016年   344篇
  2015年   482篇
  2014年   593篇
  2013年   653篇
  2012年   757篇
  2011年   728篇
  2010年   424篇
  2009年   391篇
  2008年   431篇
  2007年   422篇
  2006年   373篇
  2005年   359篇
  2004年   292篇
  2003年   300篇
  2002年   243篇
  2001年   195篇
  2000年   197篇
  1999年   171篇
  1998年   116篇
  1997年   104篇
  1996年   107篇
  1995年   106篇
  1994年   85篇
  1993年   80篇
  1992年   128篇
  1991年   101篇
  1990年   72篇
  1989年   73篇
  1988年   68篇
  1987年   50篇
  1986年   41篇
  1985年   53篇
  1984年   33篇
  1983年   24篇
  1982年   19篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1971年   7篇
  1970年   7篇
  1966年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.  相似文献   
992.

Background

Epidemiological studies have revealed that intrauterine growth retardation (IUGR) or low birth weight is linked to the later development of asthma. Epigenetic regulatory mechanisms play an important role in the fetal origins of adult disease. However, little is known regarding the correlation between epigenetic regulation and the development of asthma following IUGR.

Methods

An IUGR and ovalbumin (OVA)-sensitization/challenge rat model was used to study whether epigenetic mechanisms play a role in the development of asthma following IUGR.

Results

Maternal nutrient restriction increased histone acetylation levels of the endothelin-1 (ET-1) gene promoter in lung tissue of offspring, but did not cause significant alterations of DNA methylation. The effect was maintained until 10 weeks after birth. Furthermore, these epigenetic changes may have induced IUGR individuals to be highly sensitive to OVA challenge later in life, resulting in more significant changes related to asthma.

Conclusions

These findings suggest that epigenetic mechanisms might be closely associated with the development of asthma following IUGR, providing further insight for improved prevention of asthma induced by environmental factors.  相似文献   
993.
Cytochrome P450 (CYP) is one of the most important drug‐metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug–drug interactions in drug development. At present, chemical probe‐based assay is the most widely used approach for the evaluation of CYP activity although there are cross‐reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever‐increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome‐derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin—a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.  相似文献   
994.
995.
We have studied, by the gel mobility shift assay, the interaction of DNA binding proteins with a fragment of the proximal promoter (from nucleotides -177 to -47) of the androgen-regulated canine prostate arginine esterase gene. Several shifted bands were obtained using nuclear extracts from various tissues. In the case of the prostate, the intensity of some of the shifted bands was decreased or increased when the extracts were prepared from animals that had been castrated 12 days earlier. Several of the DNA-protein complexes could be assigned to an interaction with part or all of the sequence GGGGGTGGGGG from-124 to -114. We also obtained evidence for the presence of protein(s) interacting with an Sp1 motif present in the same fragment. These results suggest that some ubiquitous factors different from the androgen receptors could be involved in the regulation of the arginine esterase gene.  相似文献   
996.
探究植物功能性状的种内和种间变异不仅有助于揭示植物对环境的适应, 也能够反映植物的生态策略, 但不同菌根类型树木生长过程中根叶形态学功能性状的适应策略仍有待探究。本研究依托中国亚热带森林生物多样性与生态系统功能实验研究平台(BEF-China)选取7种丛枝菌根(AM)树木和7种外生菌根(EM)树木的纯林, 测定各个树种的比叶面积、叶干物质含量、比根长、根系直径、树高生长速率、地径生长速率及细根生物量等根叶形态学功能性状和生长指标, 探讨了两种菌根类型树种间的根叶形态学特征的差异。结果表明: 与AM树种相比, EM树种具有较小的比叶面积、吸收根平均直径和生长速率, 但具有更大的叶干物质含量; 两种菌根树种之间的比根长和细根生物量无显著差异。比叶面积、叶干物质含量、树高生长速率、地径生长速率和细根生物量等功能性状及生长指标在不同菌根类型、树种及二者的交互作用中均存在显著差异; 且树种、根功能型、菌根类型及三者之间的交互作用均对根功能性状有显著影响。EM树种地上指标的种内变异均大于种间变异, 而AM树种地上指标的种内和种间变异程度类似; 但两种菌根树种细根生物量的种间变异均大于种内变异。尽管两种菌根树种地上部分生长速率较快通常表现为较低的叶干物质含量, 但AM树种通常拥有较高的吸收根比根长, 而EM树种拥有较粗的运输根平均直径。吸收根比根长越低, 两类菌根树种的细根生物量就越多。由此可见, 根叶功能性状对植物地上部分的生长具有一定的协同效应, 其中运输根主要在EM树种地上生长过程中发挥重要作用, 吸收根主要与AM树种的地上部分生长有关; 但两类菌根树种的地下细根生物量均与吸收根有关。  相似文献   
997.
Glucose sensing mechanism has been intensively studied in pancreatic cells and neurons. Depolarization of membrane potential by closure of KATP , Kv and TASK channel, and subsequently Ca2+ entry via L-type voltage gated Ca2+ channel (VGCC) are implicated to mediate the signal transduction in these cells. However, the mechanism of non-excitable cells, which are lacking VGCC, for sensing glucose remains unclear. In this study, we utilized the calcium ratio measurement and patch clamping technique to study the effects of low glucose on [Ca2+]i and currents in the human embryonic kidney epithelial cells (HEK 293). We found low glucose evoked a significant reversible [Ca2+]i elevation in HEK 293 independent of the closure of Kv channels. This increase of [Ca2+]i was mediated by Ca2+ entry across plasma membrane and exhibited a dosage dependent behaviour to external glucose concentration. The low glucose-induced entry of Ca2+ was characterized as a voltage independent behaviour and had cation permeability to Na+ and Ca2+. The modulation of PLC, AMPK, tyrosine kinase and cADPribose failed to regulate this glucose-sensitive Ca2+ entry. In addition, the entry of Ca2+ was insensitive to nifedipine, 2APB, SKF, La3+, Gd3+, and KBR9743, suggesting a novel signal pathway in mediating glucose sensing.  相似文献   
998.
Experiments were performed to test the hypothesis that human eosinophil granule-derived cationic proteins stimulate vagal C-fiber afferents in the lungs and elicit pulmonary chemoreflex responses in anesthetized Sprague-Dawley rats. Intratracheal instillation of eosinophil cationic protein (ECP; 1-2 mg/ml, 0.1 ml) consistently induced an irregular breathing pattern, characterized by tachypnea (change in breathing frequency of 44.7%) and small unstable tidal volume (VT). The tachypnea, accompanied by decreased heart rate and arterial blood pressure, started within 30 s after the delivery of ECP and lasted for >30 min. These ECP-induced cardiorespiratory responses were completely prevented by perineural capsaicin treatment of both cervical vagi, which selectively blocked C-fiber conduction, suggesting the involvement of these afferents. Indeed, direct recording of single-unit activities of pulmonary C-fibers further demonstrated that the same dose of ECP evoked a pronounced and sustained (>30-min) stimulatory effect on pulmonary C-fibers. Furthermore, the sensitivity of these afferents to lung inflation was also markedly elevated after the ECP instillation, whereas the vehicle of ECP administered in the same manner had no effect. Other types of eosinophil granule cationic proteins, such as major basic protein and eosinophil peroxidase, induced very similar respiratory and cardiovascular reflex responses. In conclusion, these results show that eosinophil granule-derived cationic proteins induce a distinct stimulatory effect on vagal pulmonary C-fiber endings, which may play an important role in the airway hyperresponsiveness associated with eosinophil infiltration in the airways.  相似文献   
999.
1000.
Absence of 7-acetyl taxol binding to unassembled brain tubulin   总被引:1,自引:0,他引:1  
The effect of taxol on microtubule proteins at 0 degrees C is controversial. In order to determine if taxol is unable to bind to unassembled tubulin, as has been hypothesized, the binding of [3H]acetyl taxol has been studied using equilibrium microdialysis. Ac-taxol bound to microtubules at 37 degrees C and the binding remained stable when the temperature was lowered to 0 degrees C. Ac-taxol bound also at 0 degrees C to microtubules stabilized with rhazinilam. In contrast, there was no binding of Ac-taxol to unassembled tubulin, either free tubulin at 0 degrees C or tubulin, complexed with several microtubule poisons, at 0 and 37 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号