首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2803篇
  免费   255篇
  国内免费   404篇
  2024年   8篇
  2023年   51篇
  2022年   118篇
  2021年   221篇
  2020年   171篇
  2019年   181篇
  2018年   165篇
  2017年   129篇
  2016年   159篇
  2015年   243篇
  2014年   252篇
  2013年   244篇
  2012年   277篇
  2011年   226篇
  2010年   136篇
  2009年   115篇
  2008年   126篇
  2007年   92篇
  2006年   79篇
  2005年   71篇
  2004年   35篇
  2003年   42篇
  2002年   40篇
  2001年   29篇
  2000年   27篇
  1999年   27篇
  1998年   22篇
  1997年   24篇
  1996年   28篇
  1995年   10篇
  1994年   14篇
  1993年   3篇
  1992年   11篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   8篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1973年   2篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有3462条查询结果,搜索用时 31 毫秒
851.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
852.
Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-Synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects.  相似文献   
853.
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 μm Phe, only 2.4 μm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (β/α)8 barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.  相似文献   
854.
The Pd-catalyzed telomerization in the presence of phosphine and carbene ligands has been computed. It is shown that the C–C coupling of the less stable complex A with one trans- and one cis-butadiene in syn orientation forms the most stable intermediate B and is favorable both kinetically and thermodynamically. Protonation of B leads to equilibrium of the two most stable isomers of intermediate C. The overall regioselectivity is favored thermodynamically.   相似文献   
855.
The Lightweight Design of Low RCS Pylon Based on Structural Bionics   总被引:1,自引:0,他引:1  
<正> A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.  相似文献   
856.
海洋真菌因其特殊的生存环境和代谢机制而具有产生新型生物活性物质的潜力。近年来随着对海洋微生物研究的深入,从海洋真菌中发现了越来越多的具有抗肿瘤活性且结构新颖的天然产物。这些海洋真菌有的分离自海水、海泥或海洋沉积物,有的来自于海洋生物体。本文综述了近几年来从海洋真菌中分离得到的抗肿瘤天然产物的研究状况。  相似文献   
857.
目的 制备一种新型的心肌急性缺血再灌注损伤模型,以探讨一种更符合临床实际需求的实验方法.方法 将20只雌性SD(Sprague-Dawley)大鼠随机分成2组(对照组、实验组),采用结扎主动脉根部引起心肌缺血5min再灌注30 min建立心肌急性缺血再灌注模型;通过应用透射电镜观察心肌细胞超微结构的改变,同时检测心肌组织匀浆丙二醛(Maleic Dialdehyde,MDA)含量、超氧化物歧化酶(Superoxide Dismutase,SOD)活力.结果 透射电镜下超微结构显示实验组较对照组明显加重了心肌组织结构和线粒体的损害;实验组心肌组织MDA明显高于对照组(P<0.01),而SOD明显低于对照组(P<0.01).结论 本实验成功建立了方法简便、易于操作、取材范围广泛的心肌缺血再灌注损伤模型,为心肌缺血再灌注损伤研究提供了一种更为可行的模型.  相似文献   
858.
Effects of dexamethasone (DEX) and mild feed restriction on the uptake and utilization of fatty acids in skeletal muscle of broiler chicks (Gallus gallus domesticus) were investigated. Male Arbor Acres chicks (7-days old, n = 30) were injected with DEX or saline for 3 days, and a feed restriction group was included. DEX enhanced circulating very low density lipoprotein (VLDL) level and the lipid accumulation in both adipose and skeletal muscle tissues. Compared with the control, liver-carnitine palmitoyltransferase 1 (L-CPT1) and AMP-activated protein kinase (AMPK) α2 mRNA level of M. biceps femoris (BF) were down-regulated significantly by DEX, while mRNA expression of lipoprotein lipase (LPL), fatty acid transport protein 1 (FATP1), heart-fatty acid binding protein (H-FABP), long-chain acyl-CoA dehydrogenase (LCAD), activities of LPL and AMPK in both skeletal muscles were not obviously affected. Feed restriction increased the mRNA expression of LPL, L-CPT1 and LCAD of M. pectoralis major (PM), and FATP1, H-FABP, L-CPT1 and LCAD of BF. In conclusion, DEX retards the growth of body mass but facilitates lipid accumulation in both adipose and skeletal muscle tissues. In contrast to the favorable effect of mild feed restriction, DEX did not alter the uptake of fatty acids in the skeletal muscle. The result suggests that DEX may promote intramyocellular lipid accumulation by suppressed fatty acid oxidation while mild feed restriction improved fatty acid oxidation in skeletal muscle, especially in red muscle. Glucocorticoids (GCs) regulated muscle fatty acid metabolism in a different way from energy deficit caused by mild feed restriction.  相似文献   
859.
To elucidate the photosynthetic physiological characteristics and the physiological inherited traits of rice (Oryza sativa L.) hybrids and their parents, physiological indices of photosynthetic CO2 exchange and chlorophyll fluorescence parameters were measured in leaves of the maize phosphoenolpyruvate carboxylase (PEPC) transgenic rice as the male parent, sp. japonica rice cv. 9516 as the female parent, and the stable JAAS45 pollen line. The results revealed that the PEPC gene could be stably inherited and trans- ferred from the male parent to the JAAS45 pollen line. Moreover, the JAAS45 pollen line exhibited high levels of PEPC activity, manifesting higher saturated photosynthetic rates, photosynthetic apparent quantum yield (AQY), photochemical efficiency of photosystem II and photochemical and non-photochemical quenching, which indicated that the JAAS45 pollen line has a high tolerance to photo-inhibition/photooxidation under strong light and high temperature. Furthermore, JAAS45 was confirmed to still be a C3 plant by δ^13C carbon isotope determination and was demonstrated to have a limited photosynthetic C4 microcycle by feeding with exogenous C4 primary products, such as oxaloacetate or malate, or phosphoenolpyruvate. The present study explains the physiological inherited properties of PEPC transgenic rice and provides an expectation for the integration of traditional breeding and biological technology.  相似文献   
860.
Cell poking is an experimental technique that is widely used to study the mechanical properties of plant cells. A full understanding of the mechanical responses of plant cells to poking force Is helpful for experimental work. The aim of this study was to numerically investigate the stress distribution of the cell wall, cell turgor, and deformation of plant cells in response to applied poking force. Furthermore, the locations damaged during poking were analyzed. The model simulates cell poking, with the cell treated as a spherical, homogeneous, isotropic elastic membrane, filled with incompressible, highly viscous liquid. Equilibrium equations for the contact region and the non-contact regions were determined by using membrane theory. The boundary conditions and continuity conditions for the solution of the problem were found. The forcedeformation curve, turgor pressure and tension of the cell wall under cell poking conditions were obtained. The tension of the cell wall circumference was larger than that of the meridian. In general, maximal stress occurred at the equator around. When cell deformation increased to a certain level, the tension at the poker tip exceeded that of the equator. Breakage of the cell wall may start from the equator or the poker tip, depending on the deformation. A nonlinear model is suitable for estimating turgor, stress, and stiffness, and numerical simulation is a powerful method for determining plant cell mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号