首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24562篇
  免费   1968篇
  国内免费   1806篇
  2024年   36篇
  2023年   256篇
  2022年   734篇
  2021年   1283篇
  2020年   889篇
  2019年   1054篇
  2018年   1039篇
  2017年   754篇
  2016年   1081篇
  2015年   1479篇
  2014年   1744篇
  2013年   1907篇
  2012年   2273篇
  2011年   1949篇
  2010年   1185篇
  2009年   1026篇
  2008年   1214篇
  2007年   1082篇
  2006年   936篇
  2005年   823篇
  2004年   702篇
  2003年   633篇
  2002年   550篇
  2001年   483篇
  2000年   417篇
  1999年   403篇
  1998年   259篇
  1997年   269篇
  1996年   260篇
  1995年   243篇
  1994年   225篇
  1993年   137篇
  1992年   208篇
  1991年   147篇
  1990年   130篇
  1989年   109篇
  1988年   75篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle‐specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle‐specific promoter could be used to increase seed size, leading to grain yield improvement in rice.  相似文献   
982.
Protein poly(ADP‐ribosyl)ation (PARylation) primarily catalyzed by poly(ADP‐ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead‐associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non‐adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively.  相似文献   
983.
While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long‐term senolytic treatment is unknown. To determine whether long‐term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions in senescent cell markers (TAF+ cells) in the medial layer of aorta from aged and hypercholesterolemic mice, but not in intimal atherosclerotic plaques. While senolytic treatment significantly improved vasomotor function (isolated organ chamber baths) in both groups of mice, this was due to increases in nitric oxide bioavailability in aged mice and increases in sensitivity to NO donors in hypercholesterolemic mice. Genetic clearance of senescent cells in aged normocholesterolemic INK‐ATTAC mice phenocopied changes elicited by D+Q. Senolytics tended to reduce aortic calcification (alizarin red) and osteogenic signaling (qRT–PCR, immunohistochemistry) in aged mice, but both were significantly reduced by senolytic treatment in hypercholesterolemic mice. Intimal plaque fibrosis (picrosirius red) was not changed appreciably by chronic senolytic treatment. This is the first study to demonstrate that chronic clearance of senescent cells improves established vascular phenotypes associated with aging and chronic hypercholesterolemia, and may be a viable therapeutic intervention to reduce morbidity and mortality from cardiovascular diseases.  相似文献   
984.
985.
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.  相似文献   
986.
正Calcium is important for life.Studies over the last several decades have gradually revealed the critical involvement of calcium,especially its ionic form(Ca~(2+)),in every aspect of life forms on earth.Among them,a great deal of work has been done to illustrate how Ca2+levels are regulated in the cytoplasm and how many of the cytosolic enzymes and sig-  相似文献   
987.
Chenopodium ambrosioides L. can tolerate high concentrations of manganese and has potential for its use in the revegetation of manganese mine tailings. Following a hydroponic investigation, transmission electron microscopy (TEM)-energy disperse spectroscopy (EDS) was used to study microstructure changes and the possible accumulation of Mn in leaf cells of C. ambrosioides in different Mn treatments (200, 1000, 10000 μmol·L?1). At 200 μmol·L?1, the ultrastructure of C. ambrosioides was clearly visible without any obvious damage. At 1000 μmol·L?1, the root, stem and leaf cells remained intact, and the organelles were clearly visible without any obvious damage. However, when the Mn concentration exceeded 1000 μmol·L?1 the number of mitochondria in root cells decreased and the chloroplasts in stem cells showed a decrease in grana lamellae and osmiophilic granules. Compared to controls, treatment with 1000 μmol·L?1 or 10000 μmol·L?1 Mn over 30 days, gave rise to black agglomerations in the cells. At 10000 μmol·L?1, Mn was observed to form acicular structures in leaf cells and intercellular spaces, which may be a form of tolerance and accumulation of Mn in C. ambrosioides. This study has furthered the understanding of Mn tolerance mechanisms in plants, and is potential for the revegetation of Mn-polluted soils.  相似文献   
988.
989.
990.
The severity and/or progression of osteonecrosis of the femoral head (ONFH) are commonly assessed by radiography, nuclear magnetic resonance image which aren’t invariably correlated to severity of disease and may be disturbed by other factors. Consequently, exploring the novel biochemical signatures of ONFH may be beneficial for diagnosing and understanding this disease. In this work, a bone trabecula metabolomics was undertaken to determine the expression pattern of low molecular mass metabolites in patients of femoral head necrosis based on the ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS). Histological study showed that necrotic bone was characterized by necrosis, fibrosis and lacuna, but adjacent “normal” bone was pathologically normal. Principal component analysis in combination with orthogonal partial least-squares discrimination analysis was used to find out changed metabolites. MS/MS was used to speculate the corresponding molecule. Both osteonecrotic bone trabecula (ONBT) and adjacent “normal” bone trabecula (ANBT) showed higher levels of amino acids, such as proline, arginine, glutamine, dipeptides and lower levels of antioxidants. Most disrupted lipids, such as fatty acid esters, glycerophospholipids, sphingolipids, were found in osteonecrotic zone. The area under the receiver operating characteristic curve of combinational biomarkers (d-arginine, l-proline, l-carnitine, inosine) in ONBT and ANBT was 0.996 and 0.950, respectively. Our findings might provide a significant insight to understand the metabolic mechanism and diagnosis biomarkers of ONFH in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号