首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122410篇
  免费   2617篇
  国内免费   2992篇
  2024年   45篇
  2023年   384篇
  2022年   978篇
  2021年   1749篇
  2020年   1161篇
  2019年   1562篇
  2018年   12889篇
  2017年   11366篇
  2016年   8684篇
  2015年   2553篇
  2014年   2652篇
  2013年   2885篇
  2012年   6922篇
  2011年   15112篇
  2010年   13263篇
  2009年   9468篇
  2008年   11253篇
  2007年   12627篇
  2006年   1410篇
  2005年   1403篇
  2004年   1702篇
  2003年   1724篇
  2002年   1310篇
  2001年   740篇
  2000年   617篇
  1999年   453篇
  1998年   274篇
  1997年   277篇
  1996年   262篇
  1995年   231篇
  1994年   224篇
  1993年   181篇
  1992年   219篇
  1991年   216篇
  1990年   133篇
  1989年   105篇
  1988年   98篇
  1987年   82篇
  1986年   39篇
  1985年   44篇
  1984年   31篇
  1983年   47篇
  1982年   18篇
  1981年   18篇
  1972年   246篇
  1971年   274篇
  1965年   14篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
931.
A general method is described for synthesizing 3′,5′-dithio-2′-deoxypyrimidine nucleosides 6 and 13 from normal 2′-deoxynucleosides. 2,3′-Anhydronucleosides 2 and 9 are applied as intermediates in the process to reverse the conformation of 3′-position on sugar rings. The intramolecular rings of 2,3′-anhydrothymidine and uridine are opened by thioacetic acid directly to produce 3′-S-acetyl-3′-thio-2′-deoxynucleosides 3 or 5. To cytidine, OH? ion exchange resin was used to open the ring and 2′-deoxycytidine 10 was abtained in which 3′-OH group is in threo-conformation. The 3′-OH is activated by MsCl, and then substituted by potassium thioacetate to form the S,S′-diacetyl-3′,5′-dithio-2′-deoxycytidine 12. The acetyl groups in 3′,5′ position are removed rapidly by EtSNa in EtSH solution to afford the target molecules 6 and 13. The differences of synthetic routes between uridine and cytidine are also discusssed.  相似文献   
932.
The nonpurine selective xanthine oxidase (XO) inhibitor febuxostat attenuates development of left ventricular (LV) hypertrophy and dysfunction in mice when treatment is initiated within 1 hour of transverse aortic constriction (TAC). This study investigated whether a 7-day delay of treatment with the XO inhibitors febuxostat or allopurinol would reverse TAC-induced changes after onset of heart failure (HF). Neither treatment significantly affected TAC-induced LV hypertrophy; only febuxostat caused a modest improvement in LV function (~10% increase in LV ejection fraction). However, the purine analog allopurinol tended to increase mortality compared with vehicle or febuxostat in HF mice.  相似文献   
933.
2-,3-,4-Pyridylphosphonates and their phosphonothioate congeners were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MSn). It was found that the fragmentation pathways of these compounds were not influenced to any detectable extent by the stereochemistry at the phosphorus centers but were sensitive to the position of a nitrogen atom in the pyridine ring of these compounds. Possible mechanisms for fragmentations of the investigated compounds are discussed in detail.

  相似文献   
934.
Highlights? MIWI is a substrate of APC/C, and piRNA loading is essential for MIWI ubiquitination ? piRNA loading promotes MIWI binding to the APC/C substrate-binding subunit ? MIWI and piRNAs are coordinately eliminated in late spermatids ? Inhibition of MIWI destruction in late spermatids prevents sperm maturation  相似文献   
935.
Bioavailability of dichlorodiphenyltrichloroethanes (DDTs) in surface sediments was evaluated with semipermeable membrane devices (SPMDs) and two different sediment-dwelling benthic mussels, Bellamya aeruginosa (B. aeruginosa) and Corbicula fluminea (C. fluminea). After 28d laboratory exposure, the positive correlations of DDT concentrations between both SPMDs and benthic mussels with sediments documented that the bioavailability of DDTs was mainly affected by surrounding sediments, while the observed differences of DDT concentrations and congener proportions between B. aeruginosa and C. fluminea were due to the specific physiological characteristics of organisms and different physico-chemical properties of contaminants. Comparisons between SPMDs and benthic mussels showed higher values of biota-sediment accumulation factors (BSAF, 0.63-3.61 for B. aeruginosa and 2.19-17.08 for C. fluminea) than device accumulation factors (DAF, 1.00-1.74). This indicated that living organisms bioaccumulated much more DDTs from sediments than SPMDs due to the different exposure and uptake routes. Strong positive associations between DDTs in SPMDs and benthic mussels indicated SPMDs could mimic the bioaccumulation of DDTs, especially in C. fluminea. However, given the distinct differences observed for both concentrations and congener proportions of DDTs in SPMDs and B. aeruginosa, future study should be directed to develop reliable models with various sediment-dwelling organisms before SPMDs are routinely used in field study.  相似文献   
936.
937.
Amyloid plaques are crucial for the pathogenesis of Alzheimer disease (AD). Phagocytosis of fibrillar β-amyloid (Aβ) by activated microglia is essential for Aβ clearance in Alzheimer disease. However, the mechanism underlying Aβ clearance in the microglia remains unclear. In this study, we performed stable isotope labeling of amino acids in cultured cells for quantitative proteomics analysis to determine the changes in protein expression in BV2 microglia treated with or without Aβ. Among 2742 proteins identified, six were significantly up-regulated and seven were down-regulated by Aβ treatment. Bioinformatic analysis revealed strong over-representation of membrane proteins, including lipoprotein lipase (LPL), among proteins regulated by the Aβ stimulus. We verified that LPL expression increased at both mRNA and protein levels in response to Aβ treatment in BV2 microglia and primary microglial cells. Silencing of LPL reduced microglial phagocytosis of Aβ, but did not affect degradation of internalized Aβ. Importantly, we found that enhanced cyclin-dependent kinase 5 (CDK5) activity by increasing p35-to-p25 conversion contributed to LPL up-regulation and promoted Aβ phagocytosis in microglia, whereas inhibition of CDK5 reduced LPL expression and Aβ internalization. Furthermore, Aβ plaques was increased with reducing p25 and LPL level in APP/PS1 mouse brains, suggesting that CDK5/p25 signaling plays a crucial role in microglial phagocytosis of Aβ. In summary, our findings reveal a potential role of the CDK5/p25-LPL signaling pathway in Aβ phagocytosis by microglia and provide a new insight into the molecular pathogenesis of Alzheimer disease.Alzheimer disease (AD)1 is one of the most common neurodegenerative disorders, which is characterized by pathological hallmarks such as neuronal and synaptic loss, neurofibrillary tangles (NFTs), and senile plaques. The intracellular NFTs are mainly composed of hyper-phosphorylated microtubule-associated protein tau, whereas toxic fibrillar β-amyloid (fAβ) as the main component of senile plaques is generated by sequential proteolytic cleavage of trans-membrane β-amyloid precursor protein (APP) by β- and γ-secretases. fAβ can induce oxidative stress-mediated neuronal cell death and cause cognitive impairment in mouse brains (1). Many reports suggest that fAβ induces dysregulation of two pivotal kinases CDK5 (2, 3) and GSK-3 (4), which are crucial regulators of hyperphosphorylated tau and increased production of Aβ from APP, and thereby triggers the cascade of signal transduction events underlying neuronal cell death in AD pathogenesis.As the resident immune cells in the brain, microglia can be activated in response to fAβ and often accumulate around the amyloid deposits in the brains of AD patients. Activated microglia trigger the production of inflammatory factors, reactive oxygen species, and chemokines, which may cause neuronal cell death (5). Furthermore, increasing evidence supports that activated microglia exert a vital beneficial role in the clearance of Aβ by phagocytosis. Many receptors, including scavenger receptor A (SR-A) (6), scavenger receptor class B type I (SR-BI) (7), lipopolysaccharide receptor (CD14) (8), CD33 (9), B-class scavenger receptor CD36 (10), CD47 (11), β1 integrin (12), toll-like receptor 2 (TLR2) (13), and toll-like receptor 4 (TLR4) (14), have been implicated in microglial phagocytosis of fAβ via direct or indirect binding to Aβ. Microglial phagocytosis of fAβ is also regulated by proinflammatory cytokines (15) and chemokine receptor CX3CR1 (16). Farfara et al. reported that the γ-secretase component presenilin, which is responsible for APP cleavage and Aβ production in neurons, is important for microglial fAβ clearance, indicating a dual role for presenilin in neuronal cell death and microglial phagocytosis (17). In addition, accumulating evidence suggests a critical role of lipids and lipoproteins in microglial fAβ phagocytosis and clearance. Lee et al. reported that apolipoprotein E (ApoE) enhances fAβ trafficking and degradation, indicating a role of cholesterol in fAβ degradation (18). After internalization, fAβ is degraded through the lysosome pathway (19, 20). However, the mechanism underlying microglial internalization of fAβ remains unclear.Stable isotope labeling of amino acids in cell culture (SILAC) is an accurate and reproducible mass spectrometry-based quantitative proteomics approach for examining changes in protein expression or post-translational modifications at a large scale (21, 22). Here, we used the SILAC quantitative proteomics strategy to investigate changes in the protein levels in BV2 microglia treated with fAβ. We found that 6 proteins were up-regulated and 7 were down-regulated significantly by Aβ treatment. Interestingly, bioinformatic analysis revealed that most of these up- or down-regulated proteins, including lipoprotein lipase (LPL), were mainly distributed in the cell membrane. We verified that LPL was up-regulated at both gene and protein levels in BV2 and primary microglia in response to fAβ, thereby indicating its role in the microglial phagocytosis of Aβ. Importantly, we further demonstrated that CDK5, which is a critical serine/threonine kinase in the pathogenesis of AD, regulated the expression of LPL and played a critical role in Aβ phagocytosis of microglia. Moreover, we found that increase in the p35-to-p25 conversion contributed to the enhanced CDK5 activity under Aβ stimulus and played a vital role in regulation of LPL expression and microglial Aβ phagocytosis. Our results suggest a role of the CDK5/p25-LPL signaling pathway in Aβ phagocytosis of microglia and provide valuable information to understand the molecular mechanism underlying microglial fAβ phagocytosis.  相似文献   
938.
939.
Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding proteins. Our search for labeled peptides upon in-gel digest led to the discovery that the biotin moiety of the labeled peptides is oxidized. The in-gel analysis displayed kinase domains of two receptor-like kinases (RLKs) at a lower than expected molecular weight, indicating that these RLKs lost the extracellular domain, possibly as a result of receptor shedding. Analysis of modified peptides using a gel-free platform identified 242 different labeling sites for AcATP in the Arabidopsis proteome. Examination of each individual labeling site revealed a preference of labeling in ATP binding pockets for a broad diversity of ATP binding proteins. Of these, 24 labeled peptides were from a diverse range of protein kinases, including RLKs, mitogen-activated protein kinases, and calcium-dependent kinases. A significant portion of the labeling sites could not be assigned to known nucleotide binding sites. However, the fact that labeling could be competed with ATP indicates that these labeling sites might represent previously uncharacterized nucleotide binding sites. A plot of spectral counts against expression levels illustrates the high specificity of AcATP probes for protein kinases and known ATP binding proteins. This work introduces profiling of ATP binding activities of a large diversity of proteins in plant proteomes. The data have been deposited in ProteomeXchange with the identifier PXD000188.ATP binding and hydrolysis are the driving processes in all living organisms. Hundreds of cellular proteins are able to bind and hydrolyze ATP to unfold proteins, transport molecules over membranes, or phosphorylate small molecules or proteins. Proteins with very different structures are able to bind ATP. A large and important class of ATP binding proteins is that of the kinases, which transfer the gamma phosphate from ATP to substrates. Kinases, and particularly protein kinases, play pivotal roles in signaling and protein regulation.The genome of the model plant Arabidopsis thaliana encodes for over 1099 protein kinases and hundreds of other ATP binding proteins (1, 2). Protein kinases are involved in nearly all signaling cascades and regulate processes ranging from cell cycle to flowering and from immunity to germination. Many protein kinases in plants are receptor-like kinases (RLKs), often carrying extracellular leucine-rich repeats (LRRs). The RLK class contains at least 610 members (3), including famous examples such as receptors involved in development (e.g. BRI1, ER, CLV1) and immunity (e.g. FLS2, EFR). Other important classes are mitogen-activated protein (MAP) kinases (MPKs) (20 different members), MPK kinase kinase kinases (MAP3Ks) (60 different members (4)), and calcium-dependent protein kinases (CPKs) (34 different members (5)). Because of their diverse and important roles, protein kinases have been intensively studied in plant science. The current approach is to study protein kinases individually—a daunting task, considering the remaining hundreds of uncharacterized protein kinases. New approaches are necessary in order to study protein kinases and other ATP binding proteins globally rather than individually.ATP binding activities of protein kinases and other proteins can be detected globally by acyl-ATP (AcATP) probes (6, 7) (Fig. 1A). AcATP binds to the ATP pocket of ATP binding proteins and places the acyl group in close proximity to conserved lysine residues in the ATP binding pocket. The acyl phosphonate moiety serves as an electrophilic warhead that can be nucleophilically attacked by the amino group of the lysine, resulting in a covalent attachment of the acyl reporter of the AcATP probe on the lysine and a concomitant release of ATP. The reporter tag is usually a biotin to capture and identify the labeled proteins. Labeled proteins can be displayed on protein blots using streptavidin-HRP. However, because AcATP labels many ATP binding proteins and protein kinases are of relatively low abundance, mass spectrometry is more often used to identify and quantify labeling with AcATP probes. The analysis is preferably done using Xsite, a procedure that involves trypsination of the entire labeled proteome, followed by analysis of the biotinylated peptides rather than the biotinylated proteins (8). This “KiNativ ” approach provides enough depth and resolving power to monitor ∼160 protein kinases in a crude mammalian proteome (7). Of the 518 human protein kinases (9), 394 (76%) have been detected via AcATP labeling (6).Open in a separate windowFig. 1.Structure and mechanism of labeling with BHAcATP. A, BHAcATP contains ATP, an acyl phosphate reactive group, and a biotin tag. When BHAcATP binds to the ATP binding pocket of a protein, the amino group of the nearby lysine reacts with the carbonyl carbon, which results in the covalent binding of the biotin tag to the protein while ATP is released. B, typical BHAcATP labeling profile of Arabidopsis leaf proteome. Arabidopsis leaf extracts were labeled with BHAcATP and the biotinylated proteins were detected on protein blots using streptavidin-HRP. Coomassie Brilliant Blue staining indicates equal loading. Asterisks indicate endogenously biotinylated proteins MCCA and BCCP. White, black, and gray arrowheads indicate bands containing ATBP+RBCL, PGK1, and a mix of ATP binding proteins, respectively. Abbreviations: MCCA, 3-methylcrotonyl-CoA carboxylase; BCCP, biotin carboxyl carrier protein; ATPB, chloroplastic ATPase; RBCL, ribulose-bisphosphate carboxylase; PGK1, phosphoglycerate kinase-1.KiNativ has mostly been used to validate targets of human drugs that target protein kinases using competitive labeling experiments. This approach has been used to identify selective inhibitors of, for example, Parkinson''s disease protein kinase LRRK2 (10), the BMK1 and JNK MAP kinases (11, 12), and the mTOR kinase (13). Importantly, the correlation of the biological activity of protein-kinase-inhibiting drugs with inhibitor affinity detected using KiNativ is better than that achieved when affinities are determined by assays using heterologously expressed protein kinases (7). This improved correlation illustrates that assays in the native environment provide a more realistic measure of protein kinase function.In addition to characterizing inhibitors selectively, AcATP probes can also display differential ATP binding activities of protein kinases. For example, labeling with AcATP probes during infection with dengue virus displayed a 2- to 8-fold activation of a DNA-dependent protein kinase (14) Similarly, AcATP labeling revealed an unexpected Raf kinase activation in extracts upon protein kinase inhibitor treatment (7). In conclusion, profiling with AcATP probes is a powerful approach for monitoring protein kinases and offers unprecedented opportunities to identify selective protein kinase inhibitors and discover protein kinases with differential ATP binding activities.In this work, we introduce AcATP profiling of plant proteomes. In addition to the analysis of labeled peptides, we characterized labeling using gel-based approaches and discovered that biotin is often oxidized in this procedure. We also performed an in-depth analysis of labeling sites in proteins other than protein kinases, which had not been done before. We discuss labeling outside known nucleotide binding pockets and investigate the correlation of labeling sites with protein abundance. We describe 63 labeling sites of known nucleotide binding pockets, of which 24 represent a remarkable diversity of protein kinases, including several LRR-RLKs. This work launches a new approach to study ATP binding proteins in plant science.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号