首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10524篇
  免费   937篇
  国内免费   929篇
  2024年   18篇
  2023年   159篇
  2022年   281篇
  2021年   606篇
  2020年   416篇
  2019年   458篇
  2018年   455篇
  2017年   322篇
  2016年   473篇
  2015年   653篇
  2014年   843篇
  2013年   837篇
  2012年   998篇
  2011年   828篇
  2010年   590篇
  2009年   454篇
  2008年   504篇
  2007年   541篇
  2006年   447篇
  2005年   383篇
  2004年   328篇
  2003年   279篇
  2002年   222篇
  2001年   179篇
  2000年   160篇
  1999年   159篇
  1998年   79篇
  1997年   78篇
  1996年   76篇
  1995年   57篇
  1994年   72篇
  1993年   58篇
  1992年   76篇
  1991年   59篇
  1990年   42篇
  1989年   51篇
  1988年   29篇
  1987年   33篇
  1986年   24篇
  1985年   26篇
  1984年   9篇
  1983年   11篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
991.
Stat1 has been known as a regulator of gene expression and a mediator of IFNgamma signaling in mammalian cells, while its effect in a heat shock response remains unclear. We used RNAi knockdown, point mutations, ChIP and promoter activity assays to study the effect of Stat1 on the heat-shock induction of the hsp90alpha gene under heat shock conditions. We found that Stat1 regulates the heat shock induction of its target genes, the hsp90alpha gene in a heat shock response while the constitutive activity of the gene remains unaffected. The result of Stat1 in complex with Stat3 and HSF1 that bound at the GAS to lead a moderate heat shock induction was designated as an "intrinsic" induction of the hsp90alpha gene. Additionally a reduced or an elevated level of heat shock induction was also controlled by the Stat1 on hsp90alpha. These diverse effects on the hsp90alpha gene were a "reduced" induction with over-expressed Stat1 elicited by transfection of wild-type Stat1 or IFNgamma treatment, bound at the GAS as homodimer; and an "enhanced" heat shock induction with a mutation-mediated prohibition of Stat1/GAS binding. In conclusion, the status and efficacy of Stat1 bound at the GAS of its target gene are pivotal in determining the impact of Stat1 under heat shock. The results provided the first evidence on the tumor suppressor Stat1 that it could play diverse roles on its target genes under heat shock that also shed lights on patients with fever or under thermotherapy.  相似文献   
992.
In birds, ACTH release from the anterior pituitary gland during stress is controlled by CRH and arginine vasotocin (AVT). Using 5-wk-old male chicks, simultaneous iv injections of CRH and AVT were found to result in a greater than additive increase in plasma corticosterone levels compared with that obtained with individual administration of either peptide hormone. In order to investigate molecular mechanisms underlying this observation, the chicken CRH receptor (CRHR) and vasotocin VT2 receptor (VT2R) were fused to cyan and yellow fluorescent proteins and expressed in HeLa cells. The resulting CRHR and VT2R fusion proteins were expressed appropriately in the plasma membrane and were found to couple to downstream signal transduction pathways. Quantitative fluorescence resonance energy transfer (FRET) analysis was used to determine whether the CRHR and VT2R formed heterodimers. In the absence of CRH and AVT, the FRET efficiency was 15-18%, and the distance between receptors was 5-6 nm. Treatment of the cells that expressed both cyan fluorescent protein-CRHR and yellow fluorescent protein-VT2R with CRH or AVT alone did not lead to a significant change in the FRET efficiency. However, simultaneous addition of these hormones increased the efficiency of the FRET signal and decreased the distance between the two receptors. In HeLa cells expressing both CRHR and VT2R, treatment with CRH and AVT resulted in a significant increase in cAMP production over that with CRH alone, indicating that heterodimer formation may enhance the ability of the CRHR to activate downstream signal transduction.  相似文献   
993.
Chen H  Bai J  Ye J  Liu Z  Chen R  Mao W  Li A  Zhou J 《Cellular signalling》2007,19(6):1315-1327
Mitogen activated protein kinase (MAPK) cascades are thought to mediate diverse biological functions such as cell growth, differentiation and migration. Activated MAPK may affect microtubule (MT) which is essential for cellular polarity, differentiation and motility. Data in this study show that JWA, a newly identified novel microtubule-associated protein (MAP) was essential for the rearrangement of F-actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As2O3) and phorbol ester (PMA). Over-expression of JWA alone in HeLa, B16 and HCCLM3 cancer cells effectively inhibited cellular migration; whereas, cellular migration was significantly accelerated when cells were deficient in JWA expression. The mechanism underlying these phenomena might be due to JWA affected F-actin rearrangement. Furthermore, JWA deficiency blocked anti-migratory effect produced by As2O3 but enhanced the migratory effect initiated by PMA in HeLa cells. JWA SDR-SLR motifs are not only critical for the MAPK cascades activation, but also for cell migration. Further studies found that JWA differentially regulated cell migration via ERK downstream effectors focal adhesion kinase (FAK) and cyclooxygenase-2 (COX-2). Therefore, JWA regulated-tumor cellular migration might involve MAPK cascades activation and F-actin cytoskeleton rearrangement mechanisms. Our data provide an unexpected role for JWA in tumor cell migration behaviors.  相似文献   
994.
995.
996.
The integrins   总被引:7,自引:0,他引:7       下载免费PDF全文
The integrins are a superfamily of cell adhesion receptors that bind to extracellular matrix ligands, cell-surface ligands, and soluble ligands. They are transmembrane αβ heterodimers and at least 18 α and eight β subunits are known in humans, generating 24 heterodimers. Members of this family have been found in mammals, chicken and zebrafish, as well as lower eukaryotes, including sponges, the nematode Caenorhabditis elegans (two α and one β subunits, generating two integrins) and the fruitfly Drosophila melanogaster (five α and one β, generating five integrins). The α and β subunits have distinct domain structures, with extracellular domains from each subunit contributing to the ligand-binding site of the heterodimer. The sequence arginine-glycine-aspartic acid (RGD) was identified as a general integrin-binding motif, but individual integrins are also specific for particular protein ligands. Immunologically important integrin ligands are the intercellular adhesion molecules (ICAMs), immunoglobulin superfamily members present on inflamed endothelium and antigen-presenting cells. On ligand binding, integrins transduce signals into the cell interior; they can also receive intracellular signals that regulate their ligand-binding affinity. Here we provide a brief overview that concentrates mostly on the organization, structure and function of mammalian integrins, which have been more extensively studied than integrins in other organisms.  相似文献   
997.

Background  

DNA copy number aberration (CNA) is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP) genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH), the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required.  相似文献   
998.
Ovarian cancer is the fifth leading cause of cancer deaths among North American women. Regrettably, there is currently no reliable circulating biomarker that can detect ovarian cancer in its early stages. The CA125 biomarker is very useful for treatment response monitoring, but its sensitivity is very low for early detection. Thus, there is an urgent need for the identification of new circulating biomarkers/panel of biomarkers that could be used to diagnose ovarian cancer before it becomes clinically detectable and advanced. Unfortunately, the strategies used in the past years to identify such biomarkers have not led to any outstanding candidate. This review summarizes the different approaches used in the last decade and suggests which strategies should be adopted in the near future in order to lead to the successful identification of new ovarian cancer diagnostic biomarkers.  相似文献   
999.
A key feature of cancer chromosomes and genomes is their high level of dynamics and the ability to constantly evolve. This unique characteristic forms the basis of genetic heterogeneity necessary for cancer formation, which presents major obstacles to current cancer diagnosis and treatment. It has been difficult to integrate such dynamics into traditional models of cancer progression. In this conceptual piece, we briefly discuss some of the recent exciting progress in the field of cancer genomics and genome research. In particular, a re-evaluation of the previously disregarded non-clonal chromosome aberrations (NCCAs) is reviewed, coupled with the progress of the detection of sub-chromosomal aberrations with array technologies. Clearly, the high level of genetic heterogeneity is directly caused by genome instability that is mediated by stochastic genomic changes, and genome variations defined by chromosome aberrations are the driving force of cancer progression. In addition to listing various types of non-recurrent chromosomal aberrations, we discuss the likely mechanism underlying cancer chromosome dynamics. Finally, we call for further examination of the features of dynamic genome diseases including cancer in the context of systems biology and the need to integrate this new knowledge into basic research and clinical applications. This genome centric concept will have a profound impact on the future of biological and medical research.  相似文献   
1000.
Peptide inhibitors of insulin-regulated aminopeptidase (IRAP) accelerate spatial learning and facilitate memory retention and retrieval by binding competitively to the catalytic site of the enzyme and inhibiting its catalytic activity. IRAP belongs to the M1 family of Zn2+-dependent aminopeptidases characterized by a catalytic domain that contains two conserved motifs, the HEXXH(X)18E Zn2+-binding motif and the GXMEN exopeptidase motif. To elucidate the role of GXMEN in binding peptide substrates and competitive inhibitors, site-directed mutagenesis was performed on the motif. Non-conserved mutations of residues G428, A429 and N432 resulted in mutant enzymes with altered catalytic activity, as well as divergent changes in kinetic properties towards the synthetic substrate leucine beta-naphthylamide. The affinities of the IRAP inhibitors angiotensin IV, Nle1-angiotensin IV, and LVV-hemorphin-7 were selectively decreased. Substrate degradation studies using the in vitro substrates vasopressin and Leu-enkephalin showed that replacement of G428 by either D, E or Q selectively abolished the catalysis of Leu-enkephalin, while [A429G]IRAP and [N432A]IRAP mutants were incapable of cleaving both substrates. These mutational studies indicate that G428, A429 and N432 are important for binding of both peptide substrates and inhibitors, and confirm previous results demonstrating that peptide IRAP inhibitors competitively bind to its catalytic site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号