Recent studies on the association between CD14-159C/T polymorphism and sepsis showed inconclusive results. Accordingly, we conducted a comprehensive literature search and a meta-analysis to determine whether the CD14-159C/T polymorphism conferred susceptibility to sepsis or was associated with increased risk of death from sepsis.
Methodology
Data were collected from the following electronic databases: PubMed, Embase, Medline, Web of Knowledge, and HuGE Navigator, with the last report up to June 15, 2012. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association. We summarized the data on the association between CD14-159C/T polymorphism and sepsis in the overall population and subgroup by ethnicity and sepsis subtype.
Principal Findings
A total of 16 studies on sepsis morbidity (1369 cases and 2382 controls) and 4 studies on sepsis mortality (731 sepsis patients) met the inclusion criteria for meta-analysis. Overall analysis showed no strong evidences of association with sepsis susceptibility under any genetic model. However, slight associations were found in Asian populations (dominant model: OR = 1.38, 95%CI = 0.96–1.98, P = 0.08) and septic shock patients (dominant model: OR = 1.72, 95%CI 1.05–2.83, P = 0.03; allelic model: OR = 1.52, 95%CI 1.09–2.12, P = 0.01) in the stratified analysis. Moreover, there was borderline association between CD14-159C/T and sepsis mortality under the dominant genetic model (OR = 1.44, 95%CI = 0.98–2.11, P = 0.06).
Conclusions/Significance
This meta-analysis suggests that the CD14-159C/T polymorphism may not be a significant susceptibility factor in the risk of sepsis and mortality. Only weak associations were observed in Asian populations and septic shock patients. More studies based on larger sample sizes and homogeneous sepsis patients are needed to confirm these findings. 相似文献
The purpose of this study was to evaluate the probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Four Enterococcus isolates showed high cholesterol removal ability in media were identified as Enterococcus durans (KLDS 6.0930 and 6.0933) and Enterococcus faecalis (KLDS 6.0934 and 6.0935) by 16S rRNA and pheS gene sequences, respectively, and selected for further evaluation. In order to assess the probiotic potential and safety of these strains, the property of four Enterococcus strains were examined, including acid and bile tolerance, adherence to Caco‐2 cells and antibiotics susceptibility. All four strains showed potential cholesterol assimilation, de‐conjugation of bile salts and/or cholesterol degradation to remove cholesterol in vitro. In addition, the potential effect of E. durans KLDS 6.0930 on serum cholesterol levels was evaluated in Sprague‐Dawley rats. After 4 weeks administration, compared with rats fed a high‐cholesterol diet without lactic acid bacteria supplementation, there was a significant (P < 0.05) decrease in the total cholesterol and low‐density lipoprotein cholesterol levels in the serum of rats treated with KLDS 6.0930. Furthermore, total bile acid level in the feces was significantly (P < 0.05) increased after KLDS 6.0930 administration. These observations suggested that the strain E. durans KLDS 6.0930 may be used in the future as a good candidate for lowering human serum cholesterol levels. 相似文献
Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.
We introduce a Y-shaped gap into a silver disk to break the structure symmetry which can be looked as a loop-linked structure. Magnetic resonances are excited by incident light when incident electric field is parallel to the trimer plane. Fano resonance is generated by the coupling between bright electric mode and dark magnetic mode. These resonances can be adjusted by tuning the gap size, the radius of trimer, and the position of Y-shaped gap. The extinction cross section of the structure is calculated with the finite element method (FEM). The maximum figure of merit (FOM) is 37.8. Both the magnetic and electric field are greatly enhanced at the Fano dip and the magnetic resonance peak. 相似文献
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently. 相似文献
A suitable method for extraction of floridoside phosphate synthase (FPS, UDP-galactose: sn-3-glycerol phosphate: 1→2′α-D-galactosyl transferase)from Porphyra perforata J. Ag. was developed. Two assay methods for enzyme activity were utilized, one measuring the amount of floridoside formed by using gas-liquid chromatography, the other measuring the sn-3-glycerol phosphate-dependent formation of UDP; both assays gave similar results. FPS is a soluble protein, and FPS activity in the extract as determined by the amount of product formed in vitro compared well with the in vivo rate of floridoside synthesis (4–7 μMmol product formed·h?1·g?1 fresh wt). The rate of product formation in vitro was linear up to 45 min and proportional to protein concentration in the assay mixture. The temperature optimum was 30–35° C. FPS was active over a range of pH values from 7.0–8.5. It was stable in concentrated solutions in the presence of 0.3 M ammonium sulfate, but activity was lost in diluted solution (protein concentration below 0.2 mg·mL?1) or below 0.2 M ion strength. The data suggest that FPS may be an oligomeric protein which occurs free in the cytoplasm or loosely bound to a membrane. It may also be a regulatory protein controlling the overall rate of synthesis of floridoside in vivo. 相似文献
Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single‐nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild‐type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. 相似文献