全文获取类型
收费全文 | 58577篇 |
免费 | 4627篇 |
国内免费 | 4596篇 |
专业分类
67800篇 |
出版年
2024年 | 144篇 |
2023年 | 806篇 |
2022年 | 1865篇 |
2021年 | 3072篇 |
2020年 | 2099篇 |
2019年 | 2532篇 |
2018年 | 2362篇 |
2017年 | 1822篇 |
2016年 | 2583篇 |
2015年 | 3668篇 |
2014年 | 4433篇 |
2013年 | 4508篇 |
2012年 | 5347篇 |
2011年 | 4823篇 |
2010年 | 2934篇 |
2009年 | 2633篇 |
2008年 | 2992篇 |
2007年 | 2686篇 |
2006年 | 2298篇 |
2005年 | 1910篇 |
2004年 | 1534篇 |
2003年 | 1439篇 |
2002年 | 1094篇 |
2001年 | 915篇 |
2000年 | 891篇 |
1999年 | 818篇 |
1998年 | 508篇 |
1997年 | 462篇 |
1996年 | 482篇 |
1995年 | 427篇 |
1994年 | 414篇 |
1993年 | 328篇 |
1992年 | 448篇 |
1991年 | 326篇 |
1990年 | 290篇 |
1989年 | 261篇 |
1988年 | 210篇 |
1987年 | 195篇 |
1986年 | 177篇 |
1985年 | 155篇 |
1984年 | 115篇 |
1983年 | 122篇 |
1982年 | 81篇 |
1981年 | 45篇 |
1980年 | 51篇 |
1979年 | 63篇 |
1976年 | 46篇 |
1974年 | 54篇 |
1973年 | 45篇 |
1972年 | 53篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Li Guo Ziya Huang Xingyu Chen Min Yang Miaomiao Yang Ziwei Liu Xuejie Han Xiangjie Ma Xiaoli Wang Qiguo Gao 《植物学报(英文版)》2023,65(10):2395-2406
Pollen hydration on dry stigmas is strictly regulated by pollen–stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins(PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase(SD-RLK), we determined that SD-RLK28 directly intera... 相似文献
132.
Zhonglan Gao Chengyue Zhang Siwang Yu Xiaoda Yang Kui Wang 《Journal of biological inorganic chemistry》2011,16(5):789-798
Endoplasmic reticulum (ER) stress induced by free fatty acids (FFA) is important to β-cell loss during the development of type 2 diabetes. To test whether vanadium compounds could influence ER stress and the responses in their mechanism of antidiabetic effects, we investigated the effects and the mechanism of vanadyl bisacetylacetonate [VO(acac)2] on β cells upon treatment with palmitate, a typical saturated FFA. The experimental results showed that VO(acac)2 could enhance FFA-induced signaling pathways of unfolded protein responses by upregulating the prosurvival chaperone immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein and downregulating the expression of apoptotic C/EBP homologous protein, and consequently the reduction of insulin synthesis. VO(acac)2 also ameliorated FFA-disturbed Ca2+ homeostasis in β cells. Overall, VO(acac)2 enhanced stress adaption, thus protecting β cells from palmitate-induced apoptosis. This study provides some new insights into the mechanisms of antidiabetic vanadium compounds. 相似文献
133.
134.
Xiaokang Sun Jie Lv Fei Wang Chenyang Zhang Liangxiang Zhu Guangye Zhang Tongle Xu Zhenghui Luo Haoran Lin Xiaoping Ouyang Chunming Yang Chuluo Yang Gang Li Hanlin Hu 《Liver Transplantation》2024,14(3):2302731
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies. 相似文献
135.
Zhongkai Hao Qi Chen Wenrui Dai Yinjuan Ren Yin Zhou Jinlin Yang Sijie Xie Yanbin Shen Jihong Wu Wei Chen Guo Qin Xu 《Liver Transplantation》2020,10(10)
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage. 相似文献
136.
Tong L Lin Q Wong WK Ali A Lim D Sung WL Hew CL Yang DS 《Protein expression and purification》2000,18(2):175-181
HPLC6 is the major component of liver-type antifreeze polypeptides (AFPs) from the winter flounder, Pleuronectes americanus. To facilitate mutagenesis studies of this protein, a gene encoding the 37-amino acid mature polypeptide was chemically synthesized and cloned into the Tac cassette immediately after the bacterial ompA leader sequence for direct excretion of the AFP into the culture medium. Escherichia coli transformant with the construct placIQpar8AF was cultured in M9 medium. The recombinant AFP (rAFP) was detected by a competitive enzyme-linked immunosorbent assay (ELISA). After IPTG induction, a biologically active rAFP was expressed. The majority of the rAFP was excreted into the culture medium with only trace amounts trapped in the periplasmic space and cytoplasm. After 18 h of induction, the accumulated rAFP in the culture medium amounted to about 16 mg/L. The excreted AFP was purified from the culture medium by a single-step reverse-phase HPLC. Mass spectrometric and amino acid composition analyses confirmed the identity of the purified product. The rAFP, which lacked amidation at the C-terminal, was about 70% active when compared to the amidated wild-type protein, thus confirming the importance of C-terminal cap structure in protein stability and function. 相似文献
137.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. 相似文献
138.
Xiaoyu Yang Wei Xu Svetlana Dukleska Sabrina Benchaar Selina Mengisen Valentyn Antochshuk Jason Cheung Leslie Mann Zulfia Babadjanova Jason Rowand Rico Gunawan Alexander McCampbell Maribel Beaumont David Meininger Daisy Richardson Alexandre Ambrogelly 《MABS-AUSTIN》2013,5(5):787-794
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources. 相似文献
139.
140.
Bo Cao Yanfeng Qi Yan Yang Xichun Liu Duo Xu Wei Guo Yang Zhan Zhenggang Xiong Allen Zhang Alun R. Wang Xueqi Fu Haitao Zhang Lijing Zhao Jingkai Gu Yan Dong 《PloS one》2014,9(11)
Castration-resistant progression of prostate cancer after androgen deprivation therapies remains the most critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor (AR) activity is an established driver of castration-resistant progression, and upregulation of the full-length AR (AR-FL) and constitutively-active AR splice variants (AR-Vs) has been implicated to contribute to the resurgent AR activity. We reported previously that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) can reduce the abundance of both AR-FL and AR-Vs. In the present study, we further showed that the effect of PPD on AR expression and target genes was independent of androgen. PPD treatment resulted in a suppression of ligand-independent AR transactivation. Moreover, PPD delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation and inhibited the growth of castration-resistant 22Rv1 xenograft tumors with endogenous expression of AR-FL and AR-Vs. This was accompanied by a decline in serum prostate-specific antigen levels as well as a decrease in AR levels and mitoses in the tumors. Notably, the 22Rv1 xenograft tumors were resistant to growth inhibition by the next-generation anti-androgen enzalutamide. The present study represents the first to show the preclinical efficacy of PPD in inhibiting castration-resistant progression and growth of prostate cancer. The findings provide a rationale for further developing PPD or its analogues for prostate cancer therapy. 相似文献