首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16529篇
  免费   1261篇
  国内免费   1206篇
  2024年   31篇
  2023年   200篇
  2022年   499篇
  2021年   952篇
  2020年   571篇
  2019年   771篇
  2018年   765篇
  2017年   563篇
  2016年   797篇
  2015年   1048篇
  2014年   1295篇
  2013年   1429篇
  2012年   1516篇
  2011年   1371篇
  2010年   836篇
  2009年   747篇
  2008年   850篇
  2007年   706篇
  2006年   571篇
  2005年   507篇
  2004年   421篇
  2003年   367篇
  2002年   268篇
  2001年   250篇
  2000年   224篇
  1999年   232篇
  1998年   160篇
  1997年   138篇
  1996年   121篇
  1995年   110篇
  1994年   104篇
  1993年   87篇
  1992年   103篇
  1991年   100篇
  1990年   54篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In an attempt to identify the brain photoreceptors that mediate the photoperiodic response of the vetch aphid, Megoura viciae, we utilised immunocytochemical techniques and employed 20 antibodies directed against invertebrate and vertebrate opsins and phototransduction proteins. A sub-set of these antibodies (to Drosophila rhodopsin 1: RH1-1; vertebrate cone opsins: COS-1; CERN-874; CERN-933; vertebrate rod opsin: CERN-901; vertebrate arrestin: AB-Arr; vertebrate transducin+arrestin+rhodopsin kinase+cGMP phosphodiesterase: CERN-911; and vertebrate cellular retinoid binding protein: CRALBP) consistently labelled an anterior ventral neuropile region of the protocerebrum. These anatomical findings, coupled with previous localised illumination and micro-lesion studies, provide strong evidence that this region of the aphid brain houses the photoperiodic photoreceptors. The present study also confirms that the medial (Group I) neurosecretory cells are not the photoperiodic photoreceptors.  相似文献   
992.
Gao Z  Schaffer AA 《Plant physiology》1999,119(3):979-988
The cucurbits translocate the galactosyl-sucrose oligosaccharides raffinose and stachyose, therefore, alpha-galactosidase (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) is expected to function as the initial enzyme of photoassimilate catabolism. However, the previously described alkaline alpha-galactosidase is specific for the tetrasaccharide stachyose, leaving raffinose catabolism in these tissues as an enigma. In this paper we report the partial purification and characterization of three alpha-galactosidases, including a novel alkaline alpha-galactosidase (form I) from melon (Cucumis melo) fruit tissue. The form I enzyme showed preferred activity with raffinose and significant activity with stachyose. Other unique characteristics of this enzyme, such as weak product inhibition by galactose (in contrast to the other alpha-galactosidases, which show stronger product inhibition), also impart physiological significance. Using raffinose and stachyose as substrates in the assays, the activities of the three alpha-galactosidases (alkaline form I, alkaline form II, and the acid form) were measured at different stages of fruit development. The form I enzyme activity increased during the early stages of ovary development and fruit set, in contrast to the other alpha-galactosidase enzymes, both of which declined in activity during this period. In the mature, sucrose-accumulating mesocarp, the alkaline form I enzyme was the major alpha-galactosidase present. We also observed hydrolysis of raffinose at alkaline conditions in enzyme extracts from other cucurbit sink tissues, as well as from young Coleus blumei leaves. Our results suggest different physiological roles for the alpha-galactosidase forms in the developing cucurbit fruit, and show that the newly discovered enzyme plays a physiologically significant role in photoassimilate partitioning in cucurbit sink tissue.  相似文献   
993.
Robinson H  Ang MC  Gao YG  Hay MT  Lu Y  Wang AH 《Biochemistry》1999,38(18):5677-5683
The X-ray structure of an engineered purple CuA center in azurin from Pseudomonas aeruginosa has been determined and refined at 1.65 A resolution. Two independent purple CuA azurin molecules are in the asymmetric unit of a new P21 crystal, and they have nearly identical conformations (rmsd of 0.27 A for backbone atoms). The purple CuA azurin was produced by the loop-engineering strategy, and the resulting overall structure is unperturbed. The insertion of a slightly larger Cu-binding loop into azurin causes the two structural domains of azurin to move away from each other. The high-resolution structure reveals the detailed environment of the delocalized mixed-valence [Cu(1.5).Cu(1.5)] binuclear purple CuA center, which serves as a useful reference model for other native proteins, and provides a firm basis for understanding results from spectroscopic and functional studies of this class of copper center in biology. The two independent Cu-Cu distances of 2.42 and 2.35 A (with respective concomitant adjustments of ligand-Cu distances) are consistent with that (2.39 A) obtained from X-ray absorption spectroscopy with the same molecule, and are among the shortest Cu-Cu bonds observed to date in proteins or inorganic complexes. A comparison of the purple CuA azurin structure with those of other CuA centers reveals an important relationship between the angular position of the two His imidazole rings with respect to the Cu2S2(Cys) core plane and the distance between the Cu and the axial ligand. This relationship strongly suggests that the fine structural variation of different CuA centers can be correlated with the angular positions of the two histidine rings because, from these positions, one can predict the relative axial ligand interactions, which are responsible for modulating the Cu-Cu distance and the electron transfer properties of the CuA centers.  相似文献   
994.
Horowitz A  Murakami M  Gao Y  Simons M 《Biochemistry》1999,38(48):15871-15877
Recent studies have demonstrated that the cytoplasmic tail of syndecan-4, a widely expressed transmembrane proteoglycan, can activate protein kinase Calpha in vitro, in combination with phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)). Syndecan-4 is involved in growth factor binding as well as in adhesion to extracellular matrix proteins, while PI-4,5-P(2) synthesis is modulated by growth factor and adhesion-generated signaling. The cooperative activation of PKCalpha by the proteoglycan and the phosphatidylinositol may constitute, therefore, an essential part of the cell's response to these extracellular signals. To characterize the activation mechanism of PKCalpha, we addressed here the nature of the interplay between syndecan-4, PI-4,5-P(2), and PKCalpha by measuring their mutual binding affinities and the specificity of their interactions. We found that the cytoplasmic tail of syndecan-4 is unlikely to bind directly to PKCalpha, and that this interaction critically depends on PI-4,5-P(2). The PI-4,5-P(2) specificity of the activation of PKCalpha is conferred by the cytoplasmic tail of syndecan-4, which has higher binding affinity for this phosphatidylinositol over phosphatidylinositol-3,4-bisphosphate and the -3,4,5-trisphospate. The activation is specific to PKCalpha and does not encompass the novel protein kinase C delta isoenzyme.  相似文献   
995.
Gram negative bacterial infection is a leading cause of fatality and is attributed, at least in part, to the bacteria's capacity to persist in the host in spite of appropriate antibiotic therapy. It has been suggested that bacteria evade antibiotics by hiding within host cells. We sought to investigate this important aspect of infections in mast cells, which are inflammatory cells found in close proximity to the host-environment interface and which have recently been reported to play a crucial role in the early innate immune response to bacteria. We examined mast cell interactions with FimH-expressing E. coli, one of the major opportunistic pathogens of humans. We determined that in serum free conditions, these bacteria were able to trigger mast cell uptake without loss of bacterial viability. CD48, a mannose containing GPI (glycosylphosphatidylinositol)-linked molecule was found to be the receptor of FimH-expressing E. coli in mouse mast cells. We found that the internalization via CD48 was blocked by filipin, a cholesterol binding drug known to disrupt cholesterol/glycolipid-enriched microdomains and the bacteria-encasing vacuoles were rich in cholesterol inside cells. Interestingly, we found that mast cells subsequently expelled majority of the intracellular bacteria in 24 hours. This expulsion process was blocked by lovastatin/cyclodextrin treatment, which is known to inhibit cellular trafficking of cholesterol/glycolipid-enriched microdomains. Thus, the bacterial entry into and expulsion from mast cells were critically dependent on cholesterol/glycolipid-enriched microdomains, which represents a novel mode of tussle between the pathogen and the mast cell occurring in opsonin deficient sites in the body or even at other sites in naive or immunocompromised hosts which have low systemic levels of E. coli specific antibody.  相似文献   
996.
Jiang  C.-D.  Gao  H.-Y.  Zou  Q.  Jiang  G.-M. 《Photosynthetica》2004,42(3):409-415
Chlorophyll fluorescence kinetics was used to investigate the effect of 1,4-dithiothreitol (DTT) on the distribution of excitation energy between photosystem 1 (PS1) and photosystem 2 (PS2) in soybean leaves under high irradiance (HI). The maximum PS2 quantum yield (Fv/Fm) was hardly affected by the presence of DTT, however, photon-saturated photosynthesis was depressed distinctly. Photochemical efficiency of open PS2 reaction centres during irradiation (Fv/Fm) was enhanced by about 30–40 % by DTT treatment, whereas photochemical quenching (qP) was depressed by about 40 % under HI. DTT treatment caused a 30 % decrease in allocation of excitation energy to PS1 under HI and a 20 % increase to PS2. An obvious shift in the balance of excitation energy distribution between photosystems was observed in DTT-treated leaves. Though high excitation pressure (1 - qP) resulted from DTT treatment, non-photochemical quenching (qN) was lower. DTT completely inhibited the formation of zeaxanthin and also distinctly depressed the state transition (qT). The shift in the balance of excitation distribution between the two photosystems induced by DTT was mainly due to the enhancement of excitation energy capture by PS2 antenna and the inhibition of state transition. It might be the shift in the balance between the two photosystems that mainly induced the depression of photosynthesis. Thus, to keep high utilization efficiency of absorbed photon energy, it is necessary to maintain the balance of excitation distribution between PS2 and PS1.  相似文献   
997.
998.
999.
N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, was synthesized by our drugs research lab. The present study aims to evaluate the protective effects of F2 on myocardial ischemia-reperfusion injury in vivo, and to try to find the protective mechanism of F2. The animal model of myocardial ischemia-reperfusion injury was established by ligaturing rabbit's left ventricular branch of coronary artery for 40 min and removing the ligation later to reperfuse for 40 min. Different doses of F2 were intravenously injected before the onset of ischemia. The changes of hemodynamics were recorded during the experiment, and the activities of superoxide dismutase (SOD), creatine kinase (CK), Ca2+-ATPase, Na+,K+-ATPase and the level of malondialdehyde (MDA) of myocardial tissue were detected after reperfusion. Administration of F2 could dose-dependently ameliorate the hemodynamics of ischemia-reperfusion injured myocardium. During the course of reperfusion, MAP, LVSP, +/-dP/dt(max) in all F2 groups were obviously higher than those in the ischemia-reperfusion control group, and LVEDP were lower. F2 could also reduce the production of MDA, and maintain the activities of SOD, Ca2+-ATPase, Na+,K+-ATPase, and minimize the leakage of CK out of myocardial cells in a dose-dependent manner. These results suggested that F2 had apparent protective effects against myocardial ischemia-reperfusion injury.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号