全文获取类型
收费全文 | 16654篇 |
免费 | 1252篇 |
国内免费 | 1236篇 |
专业分类
19142篇 |
出版年
2024年 | 42篇 |
2023年 | 243篇 |
2022年 | 579篇 |
2021年 | 962篇 |
2020年 | 573篇 |
2019年 | 771篇 |
2018年 | 765篇 |
2017年 | 563篇 |
2016年 | 797篇 |
2015年 | 1048篇 |
2014年 | 1295篇 |
2013年 | 1429篇 |
2012年 | 1516篇 |
2011年 | 1371篇 |
2010年 | 836篇 |
2009年 | 747篇 |
2008年 | 850篇 |
2007年 | 706篇 |
2006年 | 571篇 |
2005年 | 507篇 |
2004年 | 421篇 |
2003年 | 367篇 |
2002年 | 268篇 |
2001年 | 250篇 |
2000年 | 224篇 |
1999年 | 232篇 |
1998年 | 160篇 |
1997年 | 138篇 |
1996年 | 121篇 |
1995年 | 110篇 |
1994年 | 104篇 |
1993年 | 87篇 |
1992年 | 103篇 |
1991年 | 100篇 |
1990年 | 54篇 |
1989年 | 55篇 |
1988年 | 41篇 |
1987年 | 32篇 |
1986年 | 22篇 |
1985年 | 27篇 |
1984年 | 23篇 |
1983年 | 15篇 |
1982年 | 7篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 42 毫秒
971.
Microtubule‐organizing centers of Aspergillus nidulans are anchored at septa by a disordered protein 下载免费PDF全文
Ying Zhang Xiaolei Gao Raphael Manck Marjorie Schmid Aysha H. Osmani Stephen A. Osmani Norio Takeshita Reinhard Fischer 《Molecular microbiology》2017,106(2):285-303
Microtubule‐organizing centers (MTOCs) are large, multi‐subunit protein complexes. Schizosaccharomyces pombe harbors MTOCs at spindle pole bodies, transient MTOCs in the division plane (eMTOCs) and nuclear‐envelope associated MTOCs in interphase cells (iMTOCs). In the filamentous fungus Aspergillus nidulans SPBs and septum‐associated MTOCs were described. Although comparable to S. pombe eMTOCs, A. nidulans sMTOCS are permanent septum‐associated structures. The composition of sMTOCs is poorly understood and how they are targeted to septa was unknown. Here, we show that in A. nidulans several SPB outer plaque proteins also locate to sMTOCs while other SPB proteins do not, including SfiA, a protein required for SPB duplication in Saccharomyces cerevisiae and S. pombe and PcpA, the anchor for γ‐TuSCs at the SPB inner plaque. The A. nidulans disordered protein Spa18Mto2 and the centrosomin‐domain containing protein ApsBMto1 were required for recruiting the γ‐TuRC component GcpC to sMTOCs and for seeding MT formation from septa. Testing different septum‐associated proteins for a role in sMTOC function, Spa10 was identified. It forms a septal pore disc structure, recruits Spa18 and ApsB to septa and is required for sMTOC activity. This is the first evidence for a septum‐specific protein, Spa10, as anchor for a specific class of MTOCs. 相似文献
972.
Hong-Xia Wang Jinwook Shin Shang Wang Balachandra Gorentla Xingguang Lin Jimin Gao Yu-Rong Qiu Xiao-Ping Zhong 《PLoS biology》2016,14(2)
Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. 相似文献
973.
Quan Gao Li Song Jia Sun Hai‐Qun Cao Likun Wang Huafeng Lin Feng Tang 《Archives of insect biochemistry and physiology》2019,100(1)
Botanical pesticides play increasingly important roles in the control of agricultural pests. In this study, the insecticidal effects, specifically the repellent action and contact toxicity, of the essential oil extracted from Chinese chive (EOC) against Plutella xylostella larvae were confirmed. The mechanisms of repellent’s action were studied using electroantennograms (EAGs), and the effects on glutathione S‐transferase (GST), carboxylesterase (CarE), and acetyl cholinesterase were investigated after EOC treatments. The EOC affected the EAG results and inhibited the activities of GST and CarE in treated P. xylostella larvae, which could explain its insecticidal effects. And, four pyrazines showed greater repellent activities than that of the EOC, which was confirmed as the main active compounds of EOC. 相似文献
974.
975.
Yumei Yang Yanjuan Liu Hang Yuan Xian Liu Yanxiu Gao Ming Gong 《Molecular membrane biology》2016,33(3-5):39-50
Membrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H+-PPase yet devoid of any correlated evidences for other two subfamilies, Na+-PPase and Na+,H+-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K+-dependent Na+,H+-PPase. Heterologous expression of CmPP could significantly enhance the salt tolerance of both Escherichia coli and Saccharomyces cerevisiae, and this effect in yeast could be fortified by N-terminal addition of a vacuole-targeting signal peptide from the H+-PPase of Trypanosoma cruzi. Furthermore, introduction of CmPP could remarkably improve the salt tolerance of tobacco, implying its potential use in constructing salt-resistant transgenic crops. Consequently, the possible mechanisms of CmPP to underlie salt tolerance are discussed. 相似文献
976.
目的:观察6-羟多巴胺单侧毁损黑质致密部多巴胺神经元后,脚桥核(PPN)和丘脑腹外侧核(VL)神经元自发放电活动的变化,探讨帕金森病(PD)的发病机制。方法:应用玻璃微电极细胞外记录法,观察对照组和PD组PPN和VL神经元的放电频率和放电形式的变化。结果:对照组和PD组大鼠PPN放电频率分别为(8.31±0.62)Hz和(10.70±0.85)Hz,PD组放电频率明显高于对照组(P〈0.05)。和对照组相比,PD组PPN的不规则和爆发式放电神经元构成比例明显增多(P〈0.01),同时规则放电频率增加(P〈0.01)。对照组和PD组大鼠VL的放电频率分别为(6.25±0.54)Hz和(5.67±0.46)Hz,两组间没有显著性差异。VL神经元放电形式表现为不规则和爆发式放电,两组间构成比也没有明显差异,但PD组爆发式神经元放电频率明显降低(P〈0.01)。结论:PD状态下,PPN神经元活动增强,PPN可能参与了PD的病理生理过程,VL神经元放电可能受PPN神经元投射的调节。 相似文献
977.
Gao J Wang Y Folta KM Krishna V Bai W Indeglia P Georgieva A Nakamura H Koopman B Moudgil B 《PloS one》2011,6(5):e19976
Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols), have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF) and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF). We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF. 相似文献
978.
Sheng Niu Jia Wang Bin Bai Lili Wu Anqi Zheng Qian Chen Pei Du Pengcheng Han Yanfang Zhang Yunfei Jia Chengpeng Qiao Jianxun Qi Wenxia Tian HongWei Wang Qihui Wang George Fu Gao 《The EMBO journal》2022,41(1)
Correction to: The EMBO Journal (2021) 40: e107786. DOI 10.15252/embj.2021107786 | Published online 8 June 2021The authors would like to add three references to the paper: Starr et al and Zahradník et al also reported that the Q498H or Q498R mutation has enhanced binding affinity to ACE2; and Liu et al reported on the binding of bat coronavirus to ACE2.Starr et al and Zahradník et al have now been cited in the Discussion section, and the following sentence has been corrected from:“According to our data, the SARS‐CoV‐2 RBD with Q498H increases the binding strength to hACE2 by 5‐fold, suggesting the Q498H mutant is more ready to interact with human receptor than the wildtype and highlighting the necessity for more strict control of virus and virus‐infected animals”.to“Here, according to our data and two recently published papers, the SARS‐CoV‐2 RBD with Q498H or Q498R increases the binding strength to hACE2 (Starr et al, 2020; Zahradník et al, 2021), suggesting the mutant with Q498H or Q498R is more ready to interact with human receptor than the wild type and highlighting the necessity for more strict control of virus and virus‐infected animals”.The Liu et al citation has been added to the following sentence:“In another paper published by our group recently, RaTG13 RBD was found to bind to hACE2 with much lower binding affinity than SARS‐CoV‐2 though RaTG13 displays the highest whole‐genome sequence identity (96.2%) with the SARS‐CoV‐2 (Liu et al, 2021)”.Additionally, the authors have added the GISAID accession IDs to the sequence names of the SARS‐CoV‐2 in two human samples (Discussion section). To make identification unambiguous, the sequence names have been updated from “SA‐lsf‐27 and SA‐lsf‐37” to “GISAID accession ID: EPI_ISL_672581 and EPI_ISL_672589”.Lastly, the authors declare in the Materials and Methods section that all experiments employed SARS‐CoV‐2 pseudovirus in cultured cells. These experiments were performed in a BSL‐2‐level laboratory and approved by Science and Technology Conditions Platform Office, Institute of Microbiology, Chinese Academy of Sciences.These changes are herewith incorporated into the paper. 相似文献
979.
Wen Wang Yan Zhao Shujuan Yao Xiujuan Cui Wenying Pan Wenqian Huang Jiangang Gao Taotao Dong Shiqian Zhang 《Biochemistry. Biokhimii?a》2017,82(8):933-941
Epithelial ovarian cancer (EOC) has the highest mortality among various types of gynecological malignancies. Most patients die of metastasis and recurrence due to cisplatin resistance. Thus, it is urgent to develop novel therapies to cure this disease. CCK-8 assay showed that nigericin exhibited strong cytotoxicity on A2780 and SKOV3 cell lines. Flow cytometry indicated that nigericin could induce cell cycle arrest at G0/G1 phase and promote cell apoptosis. Boyden chamber assay revealed that nigericin could inhibit migration and invasion in a dose-dependent manner by suppressing epithelial–mesenchymal transition (EMT) in EOC cells. These effects were mediated, at least partly, by the Wnt/β-catenin signaling pathway. Our results demonstrated that nigericin could inhibit EMT during cell invasion and metastasis through the canonical Wnt/β-catenin signaling pathway. Nigericin may prove to be a novel therapeutic strategy that is effective in patients with metastatic EOC. 相似文献
980.
Jun-Xue Jin Suo LiYu Hong Long JinHai-Ying Zhu Qing GuoQing-Shan Gao Chang-Guo YanJin-Dan Kang Xi-Jun Yin 《Theriogenology》2014
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos. 相似文献