首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42807篇
  免费   3382篇
  国内免费   2642篇
  48831篇
  2024年   67篇
  2023年   499篇
  2022年   1169篇
  2021年   2015篇
  2020年   1263篇
  2019年   1560篇
  2018年   1454篇
  2017年   1119篇
  2016年   1672篇
  2015年   2492篇
  2014年   2922篇
  2013年   3182篇
  2012年   3696篇
  2011年   3501篇
  2010年   2004篇
  2009年   1849篇
  2008年   2155篇
  2007年   1928篇
  2006年   1655篇
  2005年   1474篇
  2004年   1242篇
  2003年   1095篇
  2002年   933篇
  2001年   859篇
  2000年   749篇
  1999年   724篇
  1998年   441篇
  1997年   472篇
  1996年   445篇
  1995年   393篇
  1994年   380篇
  1993年   310篇
  1992年   443篇
  1991年   388篇
  1990年   333篇
  1989年   246篇
  1988年   237篇
  1987年   198篇
  1986年   141篇
  1985年   185篇
  1984年   121篇
  1983年   105篇
  1982年   80篇
  1981年   60篇
  1980年   55篇
  1979年   72篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Human immunodeficiency virus (HIV) progressively depletes GSH content in humans. Although the accumulated evidence suggests a role of decreased GSH in the pathogenesis of HIV, significant controversy remains concerning the mechanism of GSH depletion, especially in regard to envisioning appropriate therapeutic strategies to help compensate for such decreased antioxidant capacity. Tat, a transactivator encoded by HIV, is sufficient to cause GSH depletion in vitro and is implicated in AIDS-associated Kaposi's sarcoma and B cell lymphoma. In this study, we report a decrease in GSH biosynthesis with Tat, using HIV-1 Tat transgenic (Tat+) mice. A significant decline in the total intracellular GSH content in liver and erythrocytes of Tat+ mice was accompanied by decreased gamma-glutamylcysteine synthetase regulatory subunit mRNA and protein content, which resulted in an increased sensitivity of gamma-glutamylcysteine synthetase to feedback inhibition by GSH. Further study revealed a significant reduction in the activity of GSH synthetase in liver of Tat+ mice, which was linearly associated with their GSH content. Therefore, Tat appears to decrease GSH in vivo, at least partially, through modulation of GSH biosynthetic enzymes.  相似文献   
992.
Translational alterations occur in maize (Zea mays L.) leaves stressed by pathogen infection or herbicide paraquat treatment. These translational changes include: (a) dissociation of large polysomes to small polysomes, monosomes, and subunits; (b) a decreased rate of total protein synthesis; and (c) a reduced synthesis of several proteins by polysomes in vitro. The polysome dissociation was neither due to an extraction artifact nor to degradation of RNA by RNase. The protein patterns of polysomes isolated from leaves inoculated with Bipolaris maydis at 6 to 48 hours showed an increase in the intensity of a 57 kilodalton protein. When inoculated with less virulent pathogens, such as B. zeicola, Exserohilum turcicum, or Colletotrichum graminicola, the protein was accumulated in polysomes of leaves at 24 to 48 hours after inoculation. The 57 kilodalton protein was also accumulated in polysomes of maize leaves responding to heat shock or herbicide paraquat treatments. The purified 57 kilodalton protein reassociated with polysomes isolated from healthy leaves and inhibited polysomal translation in vitro. Since the 57 kilodalton protein is rapidly accumulated in maize polysomes in response to various biological and environmental stresses and may affect protein synthesis, it may be involved in translational regulation of maize leaves during stress response.  相似文献   
993.
恩拉霉素作为多肽类抗生素,是一种新型、安全的饲料添加剂。本文建立了一条基于大孔树脂初纯和反相色谱精制的分离纯化工艺。该工艺路线首先使用AB-8大孔树脂在0.012 mol/L盐酸溶液-甲醇(50:50,V/V)缓冲液条件下洗脱实现恩拉霉素初步纯化,再使用制备型C18反相色谱柱在0.05 mol/L磷酸二氢钠-乙腈(70:30,V/V)(p H 4.5)缓冲液洗脱下实现恩拉霉素a和b的有效分离,a、b两个组分纯度分别达到98.5%和98.0%,a和b两种有效成分的总收率为29.2%。本研究为恩拉霉素a和b两种纯品的制备以及高纯度恩拉霉素产品的生产提供了参考。  相似文献   
994.
995.
Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging‐related vascular diseases. Here, we take advantage of single‐cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging‐induced loss of peroxisome proliferator‐activated receptor‐γ coactivator‐1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery‐induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.  相似文献   
996.
低氧预处理对低氧/复氧心肌能量代谢的作用   总被引:4,自引:0,他引:4  
目的:研究低氧预处理(HPC)对心肌的保护作用,方法:借助^31P-NMR图谱技术,在模拟Langendorff离体灌流大鼠心脏的正常生理条件下,跟踪心肌高能磷酸化合物含量的动态变化。结果:在30min低氧期,PCr、ATP相对含量及PCr/Pi值逐渐减小,但HPC组减小的速度比对照组慢;而在复氧期,HPC组能提高心肌高能磷酸化合物含量的恢复程度,特别是复氧初期,HPC组PCr 、ATP相对含量及PCr/Pi值立即有了恢复;在本实验中,HPC对pHi的改善不显著。结论:HPC能降低后续长时间低氧及复氧阶段的心肌能量代谢,对心肌的低氧/复氧损伤具有保护作用。  相似文献   
997.
Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspe- cies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86±6.36. The overall expected heterozygosity of all population was 0.6708±0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic relationship with Chinese domestic chicken breeds than G. gallus gallus. All 29 microstaellite loci in this study showed high levels of polymorphism and significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds. The evolutional dendrogram is as follows: evolutional breeds→primitive breeds (Chahua chicken and Tibetan)→red jungle fowl in China (G. gallus spadiceus)→red jungle fowl in Thailand (G. gallus gallus). The results supported the theory that the domestic fowls might originate from different subspecies of red jungle fowl and Chinese domestic fowls had independent origin.  相似文献   
998.
Wang H  Wu LJ  Kim SS  Lee FJ  Gong B  Toyoda H  Ren M  Shang YZ  Xu H  Liu F  Zhao MG  Zhuo M 《Neuron》2008,59(4):634-647
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.  相似文献   
999.
A novel microbial cutinase from Thermobifida fusca WSH04 was applied in the pretreatment of wool fabrics followed by protease treatment, aiming at improving the wettability of the samples by hydrolyzing the outmost bound lipids in the wool surface. Cutinase pretreatment could increase the efficacy of the subsequent protease treatment by improving the wettability, dyeability, and shrink-resistance of the wool fabrics. The data obtained by the XPS method showed the changes of elemental concentration in the wool surface after cutinase pretreatment. Compared with the fabrics treated with hydrogen peroxide and protease, the combination of cutinase and protease treatments produced better results in terms of wettability and shrink-resistance with less strength loss. The anti-felting property of the fabrics treated with the enzymatic resist-shrink technique is very promising to meet the commercial standard.  相似文献   
1000.
Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号