首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5926篇
  免费   444篇
  国内免费   431篇
  2024年   10篇
  2023年   66篇
  2022年   128篇
  2021年   296篇
  2020年   220篇
  2019年   246篇
  2018年   243篇
  2017年   191篇
  2016年   297篇
  2015年   376篇
  2014年   466篇
  2013年   483篇
  2012年   533篇
  2011年   458篇
  2010年   279篇
  2009年   242篇
  2008年   293篇
  2007年   245篇
  2006年   188篇
  2005年   133篇
  2004年   144篇
  2003年   135篇
  2002年   116篇
  2001年   99篇
  2000年   91篇
  1999年   100篇
  1998年   69篇
  1997年   69篇
  1996年   41篇
  1995年   52篇
  1994年   58篇
  1993年   54篇
  1992年   67篇
  1991年   49篇
  1990年   34篇
  1989年   29篇
  1988年   29篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   13篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有6801条查询结果,搜索用时 140 毫秒
191.
192.
The plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, which is one of the most serious diseases of rice. Xoo has been studied for over one century, and much has been learned about it, but proteomic investigation has been neglected. In this study, proteome reference maps of Xoo were constructed by two-dimensional gel electrophoresis, and 628 spots in the gels representing 469 different protein species were identified with MALDI-TOF/TOF MS. The identified spots were assigned to 15 functional categories according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the annotations from the National Center for Biotechnology Information (NCBI) database. The data set has been deposited in the World-2DPAGE database (Database ID: 0044). In addition, comparative proteomic analysis revealed that proteins related to the TonB-dependent transportation system and energy metabolism are involved in the phenazine-1-carboxylic acid resistance in Xoo. In conclusion, we have established a proteome database for Xoo and have used this database in a comparative proteomic analysis that identified proteins potentially contributing to phenazine-1-carboxylic acid resistance in Xoo.  相似文献   
193.
Hearing loss is an etiologically heterogeneous trait with differences in the age of onset, severity and site of lesion. It is caused by a combination of genetic and/or environmental factors. A longitudinal study to examine the efficacy of early intervention for improving child outcomes is ongoing in Australia. To determine the cause of hearing loss in these children we undertook molecular testing of perinatal “Guthrie” blood spots of children whose hearing loss was either detected via newborn hearing screening or detected later in infancy. We analyzed the GJB2 and SLC26A4 genes for the presence of mutations, screened for the mitochondrial DNA (mtDNA) A1555G mutation, and screened for congenital CMV infection in DNA isolated from dried newborn blood spots. Results were obtained from 364 children. We established etiology for 60% of children. One or two known GJB2 mutations were present in 82 children. Twenty-four children had one or two known SLC26A4 mutations. GJB2 or SLC26A4 changes with unknown consequences on hearing were found in 32 children. The A1555G mutation was found in one child, and CMV infection was detected in 28 children. Auditory neuropathy spectrum disorder was confirmed in 26 children whose DNA evaluations were negative. A secondary objective was to investigate the relationship between etiology and audiological outcomes over the first 3 years of life. Regression analysis was used to investigate the relationship between hearing levels and etiology. Data analysis does not support the existence of differential effects of etiology on degree of hearing loss or on progressiveness of hearing loss.  相似文献   
194.

Background

IgA nephropathy (IgAN) is a complex syndrome characterized by deposition of IgA and IgA containing immune complexes (ICs) composed of IgG and complement C3 proteins in the mesangial area of glomeruli. The low-affinity receptors for the Fc region of IgG (FcγRs) are involved in autoantibody/immune complex-induced organ injury as well as ICs clearance. The aim of the study was to associate multiple polymorphisms within FCGR gene locus with IgAN in a large Chinese cohort.

Patients and Methods

60 single nucleotide polymorphisms (SNPs) spanning a 400 kb range within FCGR gene locus were analyzed in 2100 DNA samples from patients with biopsy proven IgAN and healthy age- and sex-matched controls from the same population in Chinese.

Results

Among the 60 SNPs investigated, 15 gene polymorphisms within FCGR gene locus (25%) were associated with susceptibility to IgAN. The most significantly associated SNPs within individual genes were FCGR2B rs12118043 (p = 8.74*10−3, OR 0.76, 95% CI 0.62–0.93), and FCRLB rs4657093 (p = 2.28*10−3, OR 0.77, 95% CI 0.65–0.91). Both conditional analysis and linkage disequilibrium analysis suggested they were independent signals associated with IgAN. Associations between FCGR2B rs12118043 and proteinuria (p = 3.65×10−2) as well as gross hematuria (p = 4.53×10−2), between FCRLB rs4657093 and levels of serum creatinine (p = 2.67×10−2) as well as eGFR (p = 5.41*10−3) were also observed. Electronic cis-expression quantative trait loci analysis supported their possible functional significance, with protective genotypes correlating lower gene expressions.

Conclusion

Our data from genetic associations and expression associations revealed potentially pathogenic roles of Fc receptor gene polymorphisms in IgAN.  相似文献   
195.
We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4+IL-17+ T cells in early treatment, but also elevated CD4+IL-10+ regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses.  相似文献   
196.

Background

The accumulation of visceral adipose tissue that occurs with normal aging is associated with increased cardiovascular risks. However, the clinical significance, biological effects, and related cardiometabolic derangements of body-site specific adiposity in a relatively healthy population have not been well characterized.

Materials and Methods

In this cross-sectional study, we consecutively enrolled 608 asymptomatic subjects (mean age: 47.3 years, 27% female) from 2050 subjects undergoing an annual health survey in Taiwan. We measured pericardial (PCF) and thoracic peri-aortic (TAT) adipose tissue volumes by 16-slice multi-detector computed tomography (MDCT) (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA) and related these to clinical characteristics, body fat composition (Tanita 305 Corporation, Tokyo, Japan), coronary calcium score (CCS), serum insulin, high-sensitivity C-reactive protein (Hs-CRP) level and circulating leukocytes count. Metabolic risk was scored by Adult Treatment Panel III guidelines.

Results

TAT, PCF, and total body fat composition all increased with aging and higher metabolic scores (all p<0.05). Only TAT, however, was associated with higher circulating leukocyte counts (ß-coef.:0.24, p<0.05), serum insulin (ß-coef.:0.17, p<0.05) and high sensitivity C-reactive protein (ß-coef.:0.24, p<0.05). These relationships persisted after adjustment in multivariable models (all p<0.05). A TAT volume of 8.29 ml yielded the largest area under the receiver operating characteristic curve (AUROC: 0.79, 95%CI: 0.74–0.83) to identify metabolic syndrome. TAT but not PCF correlated with higher coronary calcium score after adjustment for clinical variables (all p<0.05).

Conclusion

In our study, we observe that age-related body-site specific accumulation of adipose tissue may have distinct biological effects. Compared to other adiposity measures, peri-aortic adiposity is more tightly associated with cardiometabolic risk profiles and subclinical atherosclerosis in a relatively healthy population.  相似文献   
197.

Background & Aims

The clinical relevance of single nucleotide polymorphisms (SNPs) near the IL28B gene is controversial in patients with hepatitis B virus (HBV) infection. This study aimed to investigate the role of viral and host factors, including IL28B genotypes, in the natural course of chronic hepatitis B (CHB).

Methods

The study enrolled consecutive 115 treatment-naive CHB patients. HBV viral loads, genotypes, precore and basal core promotor mutations, serum hepatitis B surface antigen (HBsAg) and interferon-gamma inducible protein 10 (IP-10) levels as well as four SNPs of IL28B were determined. Serial alanine transaminase (ALT) levels in the previous one year before enrollment at an interval of three months were recorded. Factors associated with active hepatitis, defined as persistent ALT >2× upper limit of normal (ULN) or a peak ALT level >5× ULN, were evaluated.

Results

The prevalence of rs8105790 TT, rs12979860 CC, rs8099917 TT, and rs10853728 CC genotypes were 88.3%, 87.4%, 88.4% and 70.9%, respectively. In HBeAg-positive patients (n = 48), HBV viral load correlated with active hepatitis, while in HBeAg-negative patients (n = 67), rs10853728 CC genotype (p = 0.032) and a trend of higher IP-10 levels (p = 0.092) were associated with active hepatitis. In multivariate analysis, high viral load (HBV DNA >108 IU/mL, p = 0.042, odds ratio = 3.946) was significantly associated with HBeAg-positive hepatitis, whereas rs10853728 CC genotype (p = 0.019, odds ratio = 3.927) was the only independent factor associated with active hepatitis in HBeAg-negative population.

Conclusions

HBV viral load and IL28B rs10853728 CC genotype correlated with hepatitis activity in HBeAg-positive and HBeAg-negative CHB, respectively. Both viral and host factors play roles in disease activity during different phases of CHB.  相似文献   
198.
199.
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase.  相似文献   
200.
Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号