首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   16篇
  国内免费   35篇
  196篇
  2024年   1篇
  2023年   5篇
  2022年   17篇
  2021年   12篇
  2020年   11篇
  2019年   14篇
  2018年   5篇
  2017年   13篇
  2016年   13篇
  2015年   14篇
  2014年   16篇
  2013年   10篇
  2012年   14篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
181.
182.
Carbon sheets with 3D architectures, large graphitic interlayer spacing, and high electrical conductivity are highly expected to be an ideal anode material for sodium‐ion hybrid capacitors (SIHCs). Pursuing a simple synthesis methodology and advancing it from the laboratory to industry is of great importance. In this study, a new approach is presented to prepare 3D framework carbon (3DFC) with the above integrated advantages by a direct calcination of sodium citrate without aid of any additional carbon source, template, or catalyst. The first‐principle calculations verify that the large interlayer spacing and the curvature structure of 3DFC facilitate the sodium ion insertion/extraction. As a consequence, the optimal 3DFC sample exhibits high reversible capacity as well as excellent rate and cycling performance. On this basis, a dual‐carbon SIHC is fabricated by employing 3DFC as battery‐type anode and 3DFC‐derived nanoporous carbon as capacitor‐type cathode. It is able to deliver high energy‐ and power‐density feature as well as outstanding long‐term cycling stability in the potential range of 0–4.0 V. This study may open an avenue for developing high‐performance carbon electrode materials and pushes the practical applications of SIHCs a decisive step forward.  相似文献   
183.
In this paper, we report novel designs of tunable THz plasmonic devices based on liquid metals. The designed devices will be able to dynamically control and change the spectrum responses of extraordinary THz wave transmissions. Different THz device configurations are investigated, and numerical simulations have been conducted to theoretically verify the performance of the proposed structures. Moreover, an equivalent circuit model has been developed to describe the operating principle of the proposed THz devices. Good agreement has been achieved between the theoretical models and the numerical results. These new THz devices are expected to be applied in various areas of sensing, communication, and imaging.  相似文献   
184.
White semi-consolidated carbonate sediments attached to black ferromanganese oxide films were collected approximately 50 km west of a newly discovered hydrothermal field near the Southwest Indian Ridge (SWIR). The biodiversity of the prokaryotic communities within the field was examined using clone library-based culture-independent analysis of the exterior black oxides and the interior white carbonates. Subsequent 16S rRNA gene analysis suggested that Gamma-proteobacteria, Acidobacteria, and Thaumarchaeota members dominated the bacterial and archaeal clone libraries. To further characterize the metabolic processes within the microbial community, analyses of the amoA (coding the alpha subunit of the ammonia monooxygenase for Archaea) and aprA (coding the alpha subunit of the dissimilatory adenosine-5′-phosphosulfate reductase for the sulfate-reducing and sulfur-oxidizing prokaryotes) functional genes were conducted. The functional gene analysis results suggested that Thaumarchaeota and Alphaproteobacteria members were the potential players that participated in N and S cycles in this marine carbonate sedimentary environment. This paper is the first to describe the microbial communities and their potential metabolic pathways within the semi-consolidated carbonate sediments of the SWIR.  相似文献   
185.
T-2 toxin, a mycotoxin produced by Fusarium species, has been shown to cause diverse toxic effects in animals and is also a possible pathogenic factor of Kashin–Beck disease (KBD). The role of mitochondria in KBD is recognized in our recent research. The aim of this study was to evaluate the role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis to understand the pathogenesis of KBD. T-2 toxin decreased chondrocytes viabilities in concentration- and time-dependent manners. Exposure to T-2 toxin can reduce activities of mitochondrial complexes III, IV and V, ΔΨm and the cellular ATP, while intracellular ROS increased following treatment with T-2 toxin. Furthermore, mitochondrial cytochrome c release, caspase-9 and 3 activation and chondrocytes apoptosis were also obviously observed. Interestingly, Selenium (Se) can partly block T-2 toxin -induced mitochondria dysfunction, oxidative damage and chondrocytes apoptosis. These results suggest that the effect of T-2 toxin on human chondrocytes apoptosis may be mediated by a mitochondrial pathway, which is highly consistent with the chondrocytes changes in KBD.  相似文献   
186.
Leaf nitrogen (N) and phosphorus (P) have been used widely in the ecological stoichiometry to understand nutrient limitation in plant. However,few studies have focused on the relationship between root nutrients and environmental factors. The main objective of this study was to clarify the pattern of root and leaf N and P concentrations and the relationships between plant nitrogen (N) and phosphorus (P) concentrations with climatic factors under low temperature conditions in the northern Tibetan Plateau of China. We conducted a systematic census of N and P concentrations, and the N∶P ratio in leaf and root for 139 plant samples, from 14 species and 7 families in a dry Stipa purpurea alpine steppe on the northern Tibetan Plateau of China. The results showed that the mean root N and P concentrations and the N∶P ratios across all species were 13.05 mg g−1, 0.60 mg g−1 and 23.40, respectively. The mean leaf N and P concentrations and the N∶P ratio were 23.20 mg g−1, 1.38 mg g−1, and 17.87, respectively. Compared to global plant nutrients concentrations, plants distributing in high altitude area have higher N concentrations and N∶P, but lower P concentrations, which could be used to explain normally-observed low growth rate of plant in the cold region. Plant N concentrations were unrelated to the mean annual temperature (MAT). The root and leaf P concentrations were negatively correlated with the MAT, but the N∶P ratios were positively correlated with the MAT. It is highly possible this region is not N limited, it is P limited, thus the temperature-biogeochemical hypothesis (TBH) can not be used to explain the relationship between plant N concentrations and MAT in alpine steppe. The results were valuable to understand the bio-geographic patterns of root and leaf nutrients traits and modeling ecosystem nutrient cycling in cold and dry environments.  相似文献   
187.
Fe-Si-rich hydrothermal precipitates are distributed widely in low-temperature diffusing hydrothermal fields. Due to the significant contribution of Fe-oxidizing bacteria (FeOB) to the formation of this type of hydrothermal precipitates, previous studies focus mostly on investigating FeOB-related microbial populations, albeit these precipitates actually accommodate abundant other microbial communities, particularly those involved in marine nitrogen cycle. In this study, we investigated the composition, diversity, and abundance of aerobic and anaerobic ammonia-oxidizing microorganisms dwelling in low-temperature Fe-Si-rich hydrothermal precipitates of the Lau Integrated Study Site based on ammonia monooxygenase (amoA) gene and 16S rRNA gene. Phylogenetic analysis revealed the common presence of ammonia-oxidizing archaea (AOA), Nitrosospira-like ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing anammox (bacteria) in the Fe-Si-rich hydrothermal precipitates. Quantitative PCR analysis showed that AOA dominated the whole microbial community and the abundance of archaeal amoA gene was 2–3 orders of magnitude higher than that of AOB and anammox bacteria. Result of glycerol dialkyl glycerol tetraether analysis confirmed the presence and abundance of AOA. Our results suggest that microbial ammonia oxidations, especially archaeal aerobic ammonia oxidation, are prevalent and pivotal processes in low-temperature diffusing hydrothermal fields.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

188.
189.
Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon storage.  相似文献   
190.
Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD+-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号