首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   2篇
  58篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   8篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
11.
16种长白山野生植物提取物对酪氨酸酶抑制作用   总被引:1,自引:0,他引:1  
测定16种长白山野生植物对酪氨酸酶活性的影响.选用16种长白山野生植物为材料,以L-酪氨酸为底物,加入植物乙醇提取物和蘑菇酪氨酸酶,测定吸光度值,计算酪氨酸酶的抑制百分率.结果表明:葛根的抑制百分率最高为61.461%,藜芦、独活、东北延胡索等也有抑制作用.  相似文献   
12.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   
13.
Liver injury can lead to different hepatic diseases, which are the mainly causes of high global mortality and morbidity. Autophagy and Sirtuin type 1 (SIRT1) have been shown protective effects in response to liver injury. Previous studies have showed that Fibroblast growth factor 21 (FGF21) could alleviate acute liver injury (ALI), but the mechanism remains unclear. Here, we verified the relationship among FGF21, autophagy and SIRT1 in carbon tetrachloride (CCl4)‐induced ALI. We established CCl4‐induced ALI models in C57BL/6 mice and the L02 cell line. The results showed that FGF21 was robustly induced in response to stress during the development of ALI. After exogenous FGF21 treatment in ALI models, liver damage in ALI mice was significantly reduced, as well as serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Consistently, FGF21 also greatly reduced the levels of ALT, AST, pro‐inflammatory cytokines interleukin 6 (IL6) and tumour necrosis factor‐alpha (TNFα) in ALI cell lines. Mechanistically, exogenous FGF21 treatment efficiently upregulated the expression of autophagy marker microtubule‐associated protein light chain‐3 beta (LC3 II) and autophagy key molecule coiled‐coil myosin‐like BCL2‐interacting protein (Beclin1), which was accompanied by alleviating hepatotoxicity in CCl4‐treated wild‐type mice. Then, we examined how FGF21 induced autophagy expression and found that SIRT1 was also upregulated by FGF21 treatment. To further verify our results, we constructed an anti‐SIRT1 lentit‐RNAi to inhibit SIRT1 expression in mice and L02 cells, which reversed the protective effect of FGF21 on ALI. In summary, these results indicate that FGF21 alleviates ALI by enhancing SIRT1‐mediated autophagy.  相似文献   
14.
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC = 0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.  相似文献   
15.
【目的】酵母表达外源糖蛋白时会对蛋白进行过度N-糖基化修饰,产生高甘露糖型糖链,影响蛋白的活性,其中α-1,6-甘露糖转移酶(och1p)在这一过程中起着关键作用。通过敲除毕赤酵母X-33的α-1,6甘露糖转移酶(och1p)基因,获得一个对糖蛋白进行低糖基化修饰的毕赤酵母表达系统。【方法】采用双交换同源重组敲除目的基因的方法,首先敲除毕赤酵母X-33的URA3基因,获得一个尿嘧啶营养缺陷型的X-33(ura3-)菌株;然后用URA3基因作为选择标记,敲除X-33(ura3-)的α-1,6甘露糖转移酶(och1p)基因,获得OCH1基因敲除的X-33(och1-)菌株。用X-33(och1-)菌表达糖蛋白GM-CSF,分析GM-CSF蛋白糖链的变化。【结果】首次成功敲除了X-33的URA3和OCH1基因,与野生型相比,X-33(och1-)菌表达的GM-CSF蛋白过度糖基化修饰程度明显降低。【结论】X-33(och1-)菌株的构建提供了一个对蛋白低N-糖基化修饰的毕赤酵母表达系统,也为进一步的糖基化改造提供了良好的基础。  相似文献   
16.
Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.  相似文献   
17.
Dendritic cells (DC) play important roles in both tolerance and immunity to β cells in type 1 diabetes. How and why DC can have diverse and opposing functions in islets remains elusive. To answer these questions, islet DC subsets and their specialized functions were characterized. Under both homeostatic and inflammatory conditions, there were two main tissue-resident DC subsets in islets, defined as CD11b(lo/-)CD103(+)CX3CR1(-) (CD103(+) DC), the majority of which were derived from fms-like tyrosine kinase 3-dependent pre-DC, and CD11b(+)CD103(-)CX3CR1(+) (CD11b(+) DC), the majority of which were derived from monocytes. CD103(+) DC were the major migratory DC and cross-presented islet-derived Ag in the pancreatic draining lymph node, although this DC subset displayed limited phagocytic activity. CD11b(+) DC were numerically the predominant subset (60-80%) but poorly migrated to the draining lymph node. Although CD11b(+) DC had greater phagocytic activity, they poorly presented Ag to T cells. CD11b(+) DC increased in numbers and percentage during T cell-mediated insulitis, suggesting that this subset might be involved in the pathogenesis of diabetes. These data elucidate the phenotype and function of homeostatic and inflammatory islet DC, suggesting differential roles in islet immunity.  相似文献   
18.
Twenty manzamine amides were synthesized and evaluated for in vitro antimalarial and antimicrobial activities. The amides of manzamine A (1) showed significantly reduced cytotoxicity against Vero cells, although were less active than 1. The structure–activity analysis showed that linear, short alkyl groups adjacent to the amide carbonyl at position 8 are favored for antimalarial activity, while bulky and cyclic groups at position 6 provided the most active amides. Most of the amides showed potent activity against Mycobacterium intracellulare. The antimicrobial activity profile for position 8 series was similar to that for antimalarial activity profile, in which linear, slightly short alkyl groups adjacent to the amide carbonyl showed improved activity. Two amides 14 and 21, which showed potent antimalarial activity in vitro against Plasmodium falciparum were further evaluated in vivo in Plasmodium berghei infected mice. Oral administration of 14 and 21 at the dose of 30 mg/kg (once daily for three days) caused parasitemia suppression of 24% and 62%, respectively, with no apparent toxicity.  相似文献   
19.

Background

Inflammation is one of the major hallmarks of cancer. This study was designed to profile a panel of inflammatory mediators in gastric adenocarcinoma (GA) and to identify their potential differences separately in metastatic and non-metastatic patient subgroups.

Methods

Serum samples from 216 GA patients and 333 healthy controls from China were analyzed for six proteins using the Luminex multiplex assay.

Results

The serum levels for all the six proteins were significantly elevated in metastatic GA compared to non-metastatic GA. Two acute phase proteins (SAA and CRP) and a CXC chemokine (GRO) were significantly elevated in metastatic GA (p <0.01) but smaller changes were observed in non-metastatic GA compared to healthy controls. OPN is moderately increased in non-metastatic GA (2.05-fold) and more severely elevated in metastatic GA (3.34-fold). Surprisingly, soluble VCAM1 and AGP were significantly lower in both non-metastatic and metastatic GA patients compared to controls. Several individual proteins were shown to possess moderate diagnostic value for non-metastatic GA (AUC = 0.786, 0.833, 0.823 for OPN, sVCAM1 and AGP, respectively) and metastatic GA (AUC = 0.931, 0.720, 0.834 and 0.737 for OPN, sVCAM1, SAA and CRP, respectively). However, protein combinations further improve the diagnostic potential for both non-metastatic GA (best AUC = 0.946) and metastatic GA (best AUC = 0.963). The protein combination with best AUC value for both comparisons is OPN+sVCAM1+AGP+SAA.

Conclusions

These results suggest that several serum proteins are directly related to the severity of gastric cancer. Overall, stronger associations are observed with metastatic than non-metastatic GA as the protein changes are greater with the metastatic status. A combination of these serum proteins may serve as non-invasive markers to assess the severity status and stage of gastric cancer.  相似文献   
20.
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34+CD41a+ and CD41a+CD42b+ cells. LAIR-1 is also detectable in a fraction of human cord blood CD34+ cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34+ cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号