首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  国内免费   51篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   8篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1991年   1篇
排序方式: 共有110条查询结果,搜索用时 359 毫秒
41.
Understanding forest carbon cycling responses to atmospheric N deposition is critical to evaluating ecosystem N dynamics. The natural abundance of 15N (??15N) has been suggested as an efficient and non-invasive tool to monitor N pools and fluxes. In this study, three successional forests in southern China were treated with four levels of N addition. In each treatment, we measured rates of soil N mineralization, nitrification, N2O emission and inorganic N leaching as well as N concentration and ?? 15N of leaves, litters and soils. We found that foliar N concentration and ??15N were higher in the mature broadleaf forest than in the successional pine or mixed forests. Three-year continuous N addition did not change foliar N concentration, but significantly increased foliar ?? 15N (p < 0.05). Also, N addition decreased the ?? 15N of top soil in the N-poor pine and mixed forests and significantly increased that of organic and mineral soils in N-rich broadleaf forests (p < 0.05). In addition, the soil N2O emission flux and inorganic N leaching rate increased with increasing N addition and were positively correlated with the 15N enrichment factor (?? p/s) of forest ecosystems. Our study indicates that ?? 15N of leaf, litter and soil integrates various information on plant species, forest stand age, exogenous N input and soil N transformation and loss, which can be used to monitor N availability and N dynamics in forest ecosystems caused by increasing N deposition in the future.  相似文献   
42.
为了解不同林龄和密度马尾松人工林针叶和根系的养分变化特征,该文在广西南宁市横县镇龙林场选择了四种林龄(幼龄林、中龄林、成熟林和过熟林)和四种密度(低密度林、中低密度林、中高密度林和高密度林)马尾松林共八种林分,分析了马尾松针叶和根系的C、N、P含量和比值及其与土壤养分的关系。结果表明:(1)所有龄林与密度林的马尾松针叶N∶P比值均大于16,表明该地区马尾松明显受P限制,幼龄林更加明显。(2)马尾松针叶C含量随着林龄增长逐渐增大后下降,N与P含量呈微弱下降趋势,导致C∶N比值、C∶P比值和N∶P比值呈微弱上升趋势,但没达到显著水平;根系C含量、P含量和C∶N比值逐渐增大,N含量、C∶P比值和N∶P比值呈U字型且都在幼龄林最大;针叶和根系在成熟林阶段均具有较高的P含量和最高的C含量。(3)中密度林的马尾松针叶的C和N含量较高且P含量最高,C∶N比值较低且C∶P比值和N∶P比值最低;根系的C、N和P含量较高,而C∶N比值、C∶P比值和N∶P比值较低。(4)马尾松的根系养分尤其是P含量在不同龄林和不同密度林之间的变化比针叶更加剧烈,且其与土壤养分之间的相关性比针叶更强。综上结果表明,马尾松人工林受P限制,在低龄林加强P肥管理和选择合适的林分密度(中等密度)则有利于缓解马尾松受P限制的状态。  相似文献   
43.

Motivation

Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously.

Results

In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.  相似文献   
44.
45.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   
46.
Responses of soil respiration (CO2 emission) to simulated N deposition were studied in a disturbed (reforested forest with previous understory and litter harvesting) and a rehabilitated (reforested forest with no understory and litter harvesting) tropical forest in southern China from October 2005 to September 2006. The objectives of the study were to test the following hypotheses: (1) soil respiration is higher in rehabilitated forest than in disturbed forest; (2) soil respiration in both rehabilitated and disturbed tropical forests is stimulated by N additions; and (3) soil respiration is more sensitive to N addition in disturbed forest than in rehabilitated forest due to relatively low soil nutrient status in the former, resulting from different previous human disturbance. Static chamber and gas chromatography techniques were employed to quantify the soil respiration, following different N treatments (Control, no N addition; Low-N, 5 g N m−2 year−1; Medium-N, 10 g N m−2 year−1), which had been applied continuously for 26 months before the respiration measurement. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates observed in the hot and wet growing season (April–September) and the lowest rates in winter (December–February) in both rehabilitated and disturbed forests. Soil respiration rates exhibited significant positive exponential relationship with soil temperature and significant positive linear relationship with soil moisture. Soil respiration was also significantly higher in the rehabilitated forest than in the disturbed forest. Annual mean soil respiration rate in the rehabilitated forest was 20% lower in low-N plots (71 ± 4 mg CO2-C m−2 h−1) and 10% lower in medium-N plots (80 ± 4 mg CO2-C m−2 h−1) than in the control plots (89 ± 5 mg CO2-C m−2 h−1), and the differences between the control and low-N or medium-N treatments were statistically significant. In disturbed forest, annual mean soil respiration rate was 5% lower in low-N plots (63 ± 3 mg CO2-C m−2 h−1) and 8% lower in medium-N plots (61 ± 3 mg CO2-C m−2 h−1) than in the control plots (66 ± 4 mg CO2-C m−2 h−1), but the differences among treatments were not significant. The depressed effects of experimental N deposition occurred mostly in the hot and wet growing season. Our results suggest that response of soil respiration to elevated N deposition in the reforested tropical forests may vary depending on the status of human disturbance. Responsible Editor: Hans Lambers.  相似文献   
47.
A field-scale experiment with nitrogen (N) addition treatments was performed in three forest types – a pine (Pinus massoniana Lamb.) forest, a pine-broadleaf mixed forest (mixed) and a mature monsoon evergreen broadleaf forest (mature) – in tropical China. Two kinds of leaf litter, Schima superba Chardn. & Champ. and Castanopsis chinensis Hance, were studied using the litterbag technique after more than 2 years of continuous N additions. The objective of this study was to understand the cumulative effect of N addition on litter decomposition in the tropical forests and to determine if the initial effects of N addition changes over time. Results indicated that leaf litter decomposition was significantly faster in the mature forest than in the mixed or pine forests. The mean fraction of mass remaining after 12-months of decomposition was: mature (0.22) < mixed (0.50) < pine (0.51) for the two litters. Nitrogen addition significantly depressed litter decomposition in the pine forest and the mature forest, but had no significant effect in the mixed forest. These results suggest that N deposition has significant cumulative effect on litter decomposition.  相似文献   
48.
单片机模拟心电图发生器的制作   总被引:4,自引:0,他引:4  
本文介绍了采用89G51单片机的心电图信号发生器的原理和制作。本仪器小巧,灵便,能模拟产生标准件的十二导联心电图波形信号,可用来调整心电图仪和心电监视器的增益,走纸速度以及检查导联线,病人电极的性能。  相似文献   
49.
通过样地调查,比较了苏门答腊金合欢、新银合欢的林分结实量、种子散布格局、种子密度及幼苗、幼树数量,并对影响天然更新的因素以及树种的适应性进行了分析;同时,使用灰色关联度法对两树种天然更新状况进行了综合评价.结果表明,相同年龄新银合欢树种的单株结实量为1 199粒/株,苏门答腊金合欢为566粒/株,同一树种单株平均结实量为混交林高于纯林;天然更新的新银合欢林单株结实量介于新银合欢和苏门答腊金合欢之间.随着距母树距离的增加,林地苏门答腊金合欢种子密度减少的幅度较新银合欢小,新银合欢种子的传播距离为90 m、苏门答腊金合欢为110 m.苏门答腊金合欢人工林、新银合欢人工林及天然更新的新银合欢林关联系数分别为0.7269、0.6000和0.6000,苏门答腊金合欢天然更新效果稍好.  相似文献   
50.
川西亚高山桦木林的林地水文效应   总被引:18,自引:0,他引:18  
川西亚高山森林是我国西南亚高山林区水源涵养林的重要组成部分,原生的亚高山暗针叶林在经历大规模采伐利用后,天然更新的次生桦木林已成为该区域的主要森林类型之一。前人对原始暗针叶林水文学的研究已相当丰富,内容涉及冠层截留、地被物持水特征、森林蒸发散、土壤入渗、根土作用层等诸多方面;而对于采伐后人工林和天然次生林的研究较少,仅有的结论也以人工林为主。通过对林地苔藓、枯落物和土壤的野外调查与室内实验,分析了川西亚高山次生桦木林在不同林龄和海拔梯度间的林地水文效应,这对于丰富亚高山森林水文学的研究、确定长江上游水源涵养林的恢复与重建模式,都具有重要的意义。研究表明:桦木林苔藓蓄积量及最大持水量在不同林龄间差异显著,随林龄增大而显著增加;而在不同海拔间差异不显著。枯落物蓄积量及最大持水量在不同林龄及海拔间均差异显著,随林龄的增大而增加;在林龄相同的条件下,在中海拔(3200m、3400m)较高,在较高(3600m)、较低(3000m)海拔偏低。苔藓最大持水率平均为945%,在林龄和海拔间差异不显著;枯落物最大持水率平均573%,在林龄和海拔间均差异显著。各林龄和海拔梯度上的桦木林,随土壤深度的增加土壤容重均显著增大,最大持水量显著下降,但毛管持水量和最小持水量仅在部分类型下降显著。土壤0~40cm最大持水量在不同林龄间差异不显著,而在不同海拔间差异显著;这种差异主要表现在林龄10~25a的林分,随海拔升高土壤0~40cm最大持水量增大。在大规模采伐后,苔藓层的恢复是一个长期过程,可以作为次生林地水文效应向原始暗针叶林恢复程度的一个指标。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号