首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2249篇
  免费   210篇
  国内免费   164篇
  2023年   24篇
  2022年   63篇
  2021年   105篇
  2020年   77篇
  2019年   87篇
  2018年   102篇
  2017年   76篇
  2016年   124篇
  2015年   165篇
  2014年   149篇
  2013年   171篇
  2012年   207篇
  2011年   178篇
  2010年   106篇
  2009年   80篇
  2008年   117篇
  2007年   106篇
  2006年   83篇
  2005年   80篇
  2004年   67篇
  2003年   64篇
  2002年   49篇
  2001年   44篇
  2000年   37篇
  1999年   36篇
  1998年   25篇
  1997年   24篇
  1996年   29篇
  1995年   23篇
  1994年   16篇
  1993年   12篇
  1992年   13篇
  1991年   9篇
  1990年   13篇
  1989年   5篇
  1988年   7篇
  1987年   13篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有2623条查询结果,搜索用时 328 毫秒
71.
This study describes preparation and use of novel labeled and antibodious polymeric nanolabels (anti‐alpha fetoprotein cross‐linked nanolabels) as an immunogenic and semisynthetic nanolabel with potential prognostic and therapeutic roles for hepatoma cancer. Specificity, uptake, and binding efficiencies of the nanolabel have been examined in a human hepatosarcoma cell line HepG2, a human colorectal cell line DLD‐1, and a mouse myoblast cell line C2. Labeling of the cells has been performed by treating live and fixed cells with varying concentrations of the nanolabels and then, the cells have been examined under a fluorescence microscope. In addition, all cell lines have also been labeled using FITC‐conjugated nanotrastuzumab to compare the results obtained with those of the binding of the FITC‐nanoanti‐alpha fetoprotein nanolabels. Results show that FITC‐conjugated anti‐alpha fetoprotein cross‐linked nanolabels have been taken up by both live and fixed cells and have efficiently and specifically labeled HepG2 cells at a quite low concentration. Taken all together, the results indicate that the novel targeted nanoimaging tools and technique demonstrated their ability to detect the distribution of the nanolabels as probes in hepatoma cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 472–479, 2013  相似文献   
72.
Heat-stress cognate 70 (Hsc70) is a host factor that helps hepatitis C virus (HCV) to complete its life cycle in infected hepatocytes. Using Hsc70 as a target for HCV inhibition, a series of novel N-substituted benzyl matrinic/sophoridinic acid derivatives was synthesized and evaluated for their anti-HCV activity in vitro. Among these analogues, compound 7c possessing N-p-methylbenzyl afforded an appealing ability to inhibit HCV replication with SI value over 53. Furthermore, it showed a good oral pharmacokinetic profile with area-under-curve (AUC) of 13.4 µM·h, and a considerably good safety in oral administration in mice (LD50>1000 mg/kg). As 7c suppresses HCV replication via an action mode distinctly different from that of the marketed anti-HCV drugs, it has been selected as a new mechanism anti-HCV candidate for further investigation, with an advantage of no or decreased chance to induce drug-resistant mutations.  相似文献   
73.

Background

Micro-albuminuria has been well established as one of the risk factors of metabolic syndrome (MetS). However, the association of MetS and its components with low-grade albuminuria among those with normal urinary albumin excretion has not been clearly elucidated in Chinese population.

Methodology and Findings

A cross-sectional study was conducted among 9,579 participants with normal urinary albumin excretion, who were recruited from Jia Ding District, Shanghai, China. The single-void first morning urine sample was collected for urinary albumin and creatinine measurements, and urinary albumin-to-creatinine ratio (UACR) was calculated as urinary albumin divided by creatinine. Low-grade albuminuria was classified as sex-specific upper UACR quartile in this population. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. The prevalence of MetS and its components increased across the UACR quartiles (all P trend <0.01). A multivariable adjusted logistic regression analysis revealed that the prevalence of MetS was gradually elevated according to the UACR quartiles (adjusted odds ratios [ORs] were 1.14, 1.24 and 1.59 for UACR quartiles 2, 3 and 4, compared with the lowest quartile; P trend<0.0001). In the further stratified logistic regression analyses, the associations between low-grade albuminuria and MetS were significant in both sex strata (male and female), both age strata (<60 and ≥60 years), both body mass index strata (<24 and ≥24 kg/m2), and both diabetes strata (yes and no). Compared to the lowest UACR quartile, the participants in the highest quartile of UACR had the highest prevalence of central obesity (OR = 1.43; 95%CI = 1.25–1.63), high blood pressure (OR = 1.64; 95%CI = 1.43–1.87), hyperglycemia (OR = 1.52; 95%CI = 1.30–1.78) and high triglycerides (OR = 1.19; 95%CI = 1.04–1.37).

Conclusions and Significance

Low-grade albuminuria was significantly associated with the increasing prevalence of MetS and its components in the middle-aged and elderly Chinese population with normal urinary albumin excretion.  相似文献   
74.
Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.  相似文献   
75.
Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice.  相似文献   
76.
77.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   
78.
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.  相似文献   
79.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   
80.
A wide range of microorganisms found in the rhizhosphere are able to regulate plant growth and development, but little is known about the mechanism by which epiphytic microbes inhibit plant growth. Here, an epiphytic bacteria Stenotrophomonas maltophilia, named as LZMBW216, were isolated and identified from the potato (Solanum tuberosum L. cv. Da Xi Yang) leaf surface. They could decrease primary root elongation and lateral root numbers in Arabidopsis seedlings. The inhibitory effects of LZMBW216 on plant growth were not due to a reduced indole-3-acetic acid (IAA) content, as exogenously applied IAA did not recover the inhibition. Furthermore, LZMBW216 did not affect the expression of DR5::GUS and CycB1;1::GUS. However, we found that LZMBW216 exhibited little effect on the primary root elongation in the pin2 mutant and on the lateral root numbers in the aux1-7 mutant. Moreover, LZMBW216 decreased expressions of AUX1 and PIN2 proteins. Together, these results suggest that root system architecture alterations caused by LZMBW216 may involve polar auxin transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号