首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2441篇
  免费   193篇
  国内免费   189篇
  2823篇
  2024年   11篇
  2023年   39篇
  2022年   95篇
  2021年   135篇
  2020年   126篇
  2019年   139篇
  2018年   114篇
  2017年   107篇
  2016年   115篇
  2015年   144篇
  2014年   175篇
  2013年   177篇
  2012年   213篇
  2011年   202篇
  2010年   110篇
  2009年   113篇
  2008年   95篇
  2007年   101篇
  2006年   97篇
  2005年   69篇
  2004年   57篇
  2003年   59篇
  2002年   43篇
  2001年   35篇
  2000年   33篇
  1999年   29篇
  1998年   22篇
  1997年   21篇
  1996年   18篇
  1995年   19篇
  1994年   25篇
  1993年   12篇
  1992年   17篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
排序方式: 共有2823条查询结果,搜索用时 10 毫秒
61.
62.
生防放线菌Ahn75的荧光标记及其在水稻中的定殖   总被引:3,自引:2,他引:1  
【背景】目前gfp标记基因已成为研究靶标微生物与宿主之间互作的一种重要工具。利用gfp基因标记生防菌株,可以对生防菌株的生存及定殖能力进行有效追踪。【目的】对生防放线菌Ahn75进行荧光标记,探讨其在水稻中的定殖规律,为研究Ahn75的稻瘟病防治机制奠定基础。【方法】首先通过电激转化将含绿色荧光标记基因(gfp)的质粒pIJ8655导入大肠杆菌ET12567中,然后采用接合转移的方法将gfp整合到Ahn75基因组上;通过平板对峙试验检验Ahn75-GFP在标记绿色荧光后对稻瘟病病原菌的抑菌活性;采用喷施孢子液的方式将带荧光标记的Ahn75-GFP定殖水稻,并利用荧光显微镜观察生防菌在水稻中的定殖情况;对定殖水稻中的内生菌进行重分离,探究菌株在水稻组织中的分布规律。【结果】PCR扩增和荧光观察表明,绿色荧光标记基因成功整合到生防放线菌Ahn75中。通过平板对峙试验,发现Ahn75-GFP对稻瘟病病原菌抑菌活性与原始菌株没有显著差别。在荧光显微镜下,可以观察到Ahn75-GFP能稳定定殖于水稻的根、茎、叶等组织中,而水稻内生菌重分离试验表明该菌株在茎中的定殖力最强。【结论】获得一株绿色荧光标记生防菌株Ahn75-GFP,结果显示该菌株定殖水稻效果良好,这对于研究Ahn75的稻瘟病防治具有重要意义。  相似文献   
63.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
64.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   
65.
Sepiapterin reductase, a homodimer composed of two subunits, plays an important role in the biosynthesis of tetrahydrobiopterin. Furthermore, sepiapterin reductase exhibits a wide distribution in different tissues and is associated with many diseases, including brain dysfunction, chronic pain, cardiovascular disease and cancer. With regard to drugs targeting sepiapterin reductase, many compounds have been identified and provide potential methods to treat various diseases. However, the underlying mechanism of sepiapterin reductase in many biological processes is unclear. Therefore, this article summarized the structure, distribution and function of sepiapterin reductase, as well as the relationship between sepiapterin reductase and different diseases, with the aim of finding evidence to guide further studies on the molecular mechanisms and the potential clinical value of sepiapterin reductase. In particular, the different effects induced by the depletion of sepiapterin reductase or the inhibition of the enzyme suggest that the non‐enzymatic activity of sepiapterin reductase could function in certain biological processes, which also provides a possible direction for sepiapterin reductase research.  相似文献   
66.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
67.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
68.
正Dear Editor,Till January 20, 2020, the 2019-new coronavirus(2019-nCoV) has caused more than one hundred cases in Wuhan(WMHC 2020). During a retrospective study of recent pneumonia patients in our department, we found two patients who are likely being infected with the 2019-nCoV.  相似文献   
69.
Lu  Ligong  Zhang  Hui  Zhan  Meixiao  Jiang  Jun  Yin  Hua  Dauphars  Danielle J.  Li  Shi-You  Li  Yong  He  You-Wen 《中国科学:生命科学英文版》2020,63(12):1833-1849
Science China Life Sciences - The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people and caused tremendous morbidity and mortality worldwide....  相似文献   
70.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号