首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   189篇
  国内免费   253篇
  2024年   2篇
  2023年   27篇
  2022年   60篇
  2021年   104篇
  2020年   66篇
  2019年   100篇
  2018年   93篇
  2017年   51篇
  2016年   85篇
  2015年   156篇
  2014年   160篇
  2013年   155篇
  2012年   197篇
  2011年   182篇
  2010年   116篇
  2009年   108篇
  2008年   127篇
  2007年   124篇
  2006年   122篇
  2005年   77篇
  2004年   62篇
  2003年   58篇
  2002年   60篇
  2001年   36篇
  2000年   38篇
  1999年   24篇
  1998年   20篇
  1997年   21篇
  1996年   17篇
  1995年   23篇
  1994年   12篇
  1993年   12篇
  1992年   8篇
  1991年   10篇
  1990年   10篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有2551条查询结果,搜索用时 15 毫秒
211.
A carboxyl-terminated N-isopropylacrylamide/vinyl laurate (VL) copolymer was prepared and coupled with chitosan (molecular weight = 2000) to produce a chitosan-NIPAAm/VL copolymer (PNVLCS) vector. The aqueous solution of PNVLCS displayed an obvious thermoresponsive behavior with a lower critical solution temperature (LCST) about 26 degrees C. The transmission electron microscopy (TEM) showed that the size of PNVLCS/DNA complexes varied with charge ratios (+/-), and the smaller nanoparticles were formed at higher charge ratios. DLS revealed that the size of complex particles was dependent on temperature. The results of temperature-variable circular dichroism (CD), UV, and electrophoresis retardation indicated that at lower charge ratios, DNA in the complexes assume a B conformation, whereas increasing charge ratios caused B --> C type conformation transformation; the dissociation-formation of PNVLCS/DNA complexes could be tuned by varying temperature: at 37 degrees C, the collapse of PNIPAAm in PNVLCS was favorable for the formation of compact complexes, shielding more DNA from exposure; at 20 degrees C, the hydrated and extended PNIPAAm chains facilitated the unpacking of DNA from PNVLCS, increasing the exposure of DNA. PNVLCS was used to transfer plasmid-encoding beta-galactosidase into C2C12 cells. The level of gene expression could be controlled by varying incubation temperature. The transfection efficiency of PNVLCS was well improved by temporarily reducing culture temperature to 20 degrees C, whereas naked DNA and Lipofectamine 2000 did not demonstrate the characteristics of thermoresponsive gene transfection.  相似文献   
212.
Nucleotide excision is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer XPC-Rad23 is involved in recognition of and binding to such lesions. We have isolated full-length cDNAs encoding two different members of the maize Rad23 family. The deduced amino acid sequences of both maize orthologues show a high degree of homology to plant and animal Rad23 proteins. The cDNA encoding maize Rad23A was cloned as an in-frame C-terminal fusion of glutathione S-transferase. This chimera was expressed in Escherichia coli as a soluble protein and purified to homogeneity using glutathione-agarose followed by MonoQ column chromatography. Purified recombinant maize Rad23 protein was used to generate polyclonal antibodies that cross-react with a approximately 48-kDa protein in extracts from plant as well as mammalian cells. The purified recombinant protein and antibodies would be useful reagents to study the biochemistry of nucleotide excision repair in plants.  相似文献   
213.
HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion   总被引:6,自引:0,他引:6       下载免费PDF全文
Activation of the hepatocyte growth factor receptor Met induces a morphogenic response and stimulates the formation of branching tubules by Madin-Darby canine kidney (MDCK) epithelial cells in three-dimensional cultures. A constitutively activated ErbB2/Neu receptor, NeuNT, promotes a similar invasive morphogenic program in MDCK cells. Because both receptors are expressed in breast epithelia, are associated with poor prognosis, and hepatocyte growth factor (HGF) is expressed in stroma, we examined the consequence of cooperation between these signals. We show that HGF disrupts NeuNT-induced epithelial morphogenesis, stimulating the breakdown of cell-cell junctions, dispersal, and invasion of single cells. This correlates with a decrease in junctional proteins claudin-1 and E-cadherin, in addition to the internalization of the tight junction protein ZO-1. HGF-induced invasion of NT-expressing cells is abrogated by pretreatment with a pharmacological inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, which restores E-cadherin and ZO-1 at cell-cell junctions, establishing the involvement of MEK-dependent pathways in this process. These results demonstrate that physiological signals downstream from the HGF/Met receptor synergize with ErbB2/Neu to enhance the malignant phenotype, promoting the breakdown of cell-cell junctions and enhanced cell invasion. This is particularly important for cancers where ErbB2/Neu is overexpressed and HGF is a physiological growth factor found in the stroma.  相似文献   
214.
Calponin is an extensively studied actin-binding protein, but its function is not well understood. Among three isoforms of calponin, h2-calponin is found in both smooth muscle and non-muscle cells. The present study demonstrates that epidermal keratinocytes and fibroblast cells express significant amounts of h2-calponin. The expression of h2-calponin is cell anchorage-dependent. The levels of h2-calponin decrease when cells are rounded up and remain low when cells are prevented from adherence to a culture dish. h2-calponin expression resumes after the floating cells are allowed to form a monolayer in plastic dish. Cell cultures on polyacrylamide gels of different stiffness demonstrated that h2-calponin expression is affected by the mechanical properties of the culture matrix. When cells are cultured on soft gel that applies less traction force to the cell and, therefore, lower mechanical tension in the cytoskeleton, the level of h2-calponin is significantly lower than that in cells cultured on hard gel or rigid plastic dish. Force-expression of h2-calponin enhanced the resistance of the actin filaments to cytochalasin B treatment. Keratinocyte differentiation is accompanied by a mechanical tension-related up-regulation of h2-calponin. Lowering the tension of actin cytoskeleton by inhibiting non-muscle myosin II ATPase decreased h2-calponin expression. In contrast to the mechanical tension regulation of endogenous h2-calponin, the expression of h2-calponin using a cytomegalovirus promotor was independent of the stiffness of culture matrix. The results suggest that h2-calponin represents a novel manifestation of mechanical tension responsive gene regulation that may modify cytoskeleton function.  相似文献   
215.
216.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.  相似文献   
217.
The methodology combining Axisymmetric Drop Shape Analysis (ADSA) with a captive bubble (ADSA-CB) facilitates pulmonary surfactant related studies. The accuracy of ADSA-CB is crucially dependent on the quality of the bubble profile extracted from the raw image. In a previous paper, an image analysis scheme featuring a Canny edge detector and a Axisymmetric Liquid Fluid Interfaces-Smoothing (ALFI-S) algorithm was developed to process captive bubble images under a variety of conditions, including images with extensive noise and/or lack of contrast. A new version of ADSA-CB based on that image analysis scheme is developed and applied to pulmonary surfactant and pulmonary surfactant-polymer systems. The new version is found to be highly noise-resistant and well self-adjusting.  相似文献   
218.
Integrin beta-subunits contain an N-terminal PSI (for plexin-semaphorin-integrin) domain that contributes to integrin activation and harbors the PI(A) alloantigen associated with immune thrombocytopenias and susceptibility to sudden cardiac death. Here we report the crystal structure of PSI in the context of the crystallized alphaVbeta3 ectodomain. The integrin PSI forms a two-stranded antiparallel beta-sheet flanked by two short helices; its long interstrand loop houses Pl(A) and may face the EGF2 domain. The integrin PSI contains four cysteine pairs connected in a 1-4, 2-8, 3-6, 5-7 pattern. An unexpected feature of the structure is that the final, eighth cysteine is located C-terminal to the Ig-like hybrid domain and is thus separated by the hybrid domain from the other seven cysteines of PSI. This architecture may be relevant to the evolution of integrins and should help refine the current models of integrin activation.  相似文献   
219.
Troponin T (TnT) is an essential protein in the Ca2+ regulatory system of striated of muscle. Three fiber type-specific TnT genes have evolved in higher vertebrates to encode cardiac, slow and fast skeletal muscle TnT isoforms. To understand the functional significance of TnT isoforms, we studied the effects of acidosis on the contractility of transgenic mouse cardiac muscle that expresses fast skeletal muscle TnT. Contractility analysis of intact cardiac muscle strips showed that while no differences were detected at physiological pH, the transgenic cardiac muscle had significantly greater decreases in +dF/dtmax at acidic pH than that of the wild-type control. Contractility of skinned cardiac muscles demonstrated that the presence of fast TnT resulted in significantly larger decreases in force and Ca2+ sensitivity at acidic pH than that of the wild-type control. The effect of TnT isoforms on the tolerance of muscle to acidosis may explain the higher tolerance of embryonic versus adult cardiac muscles. The results are consistent with the hypothesis that charge differences in TnT isoforms contribute to the contractility of muscle. The data further support a hypothesis that slow TnT is similar to the cardiac, but not fast, and TnT may contribute to the higher tolerance of slow muscles to stress conditions. Therefore, TnT isoform diversity may contribute to the compatibility of muscle thin filaments to cellular environments in different fiber types, during development and functional adaptation.  相似文献   
220.
Proteomics was used to identify a protein encoded by ORF 3a in a SARS-associated coronavirus (SARS-CoV). Immuno-blotting revealed that interchain disulfide bonds might be formed between this protein and the spike protein. ELISA indicated that sera from SARS patients have significant positive reactions with synthesized peptides derived from the 3a protein. These results are concordant with that of a spike protein-derived peptide. A tendency exists for co-mutation between the 3a protein and the spike protein of SARS-CoV isolates, suggesting that the function of the 3a protein correlates with the spike protein. Taken together, the 3a protein might be tightly correlated to the spike protein in the SARS-CoV functions. The 3a protein may serve as a new clinical marker or drug target for SARS treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号