首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12881篇
  免费   1251篇
  国内免费   2143篇
  2024年   38篇
  2023年   176篇
  2022年   401篇
  2021年   555篇
  2020年   458篇
  2019年   656篇
  2018年   562篇
  2017年   511篇
  2016年   563篇
  2015年   762篇
  2014年   1016篇
  2013年   1047篇
  2012年   1285篇
  2011年   1151篇
  2010年   788篇
  2009年   680篇
  2008年   798篇
  2007年   642篇
  2006年   628篇
  2005年   575篇
  2004年   534篇
  2003年   533篇
  2002年   489篇
  2001年   334篇
  2000年   224篇
  1999年   181篇
  1998年   141篇
  1997年   109篇
  1996年   72篇
  1995年   70篇
  1994年   72篇
  1993年   36篇
  1992年   41篇
  1991年   41篇
  1990年   26篇
  1989年   23篇
  1988年   7篇
  1987年   11篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 974 毫秒
101.
Gao  Feng  Zhao  Shanshan  Men  Shuzhen  Kang  Zhensheng  Hong  Jian  Wei  Chunhong  Hong  Wei  Li  Yi 《中国科学:生命科学英文版》2020,63(11):1703-1713

RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.

  相似文献   
102.
Grain size and plant architecture are critical factors determining crop productivity. Here, we performed gene editing of the MIR396 gene family in rice and found that MIR396e and MIR396f are two important regulators of grain size and plant architecture. mir396ef mutations can increase grain yield by increasing grain size. In addition, mir396ef mutations resulted in an altered plant architecture, with lengthened leaves but shortened internodes, especially the uppermost internode. Our research suggests that mir396ef mutations promote leaf elongation by increasing the level of a gibberellin (GA) precursor, mevalonic acid, which subsequently promotes GA biosynthesis. However, internode elongation in mir396ef mutants appears to be suppressed via reduced CYP96B4 expression but not via the GA pathway. This research provides candidate gene‐editing targets to breed elite rice varieties.  相似文献   
103.
Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant–pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host–pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host–pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae–plant interaction via an intrinsic virulence function and suppress immunity following infection.  相似文献   
104.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   
105.
Shi  Zhenjie  Zheng  Qianjiao  Sun  Xiaoyang  Xie  Fuchun  Zhao  Jian  Zhang  Gaoyun  Zhao  Wei  Guo  Zhixin  Ariunzul  Ariuka  Fahad  Shah  Adnan  Muhammad  Qin  Dong  Saud  Shah  Yajun  Chen 《BMC plant biology》2020,20(1):1-15
Kernel weight and morphology are important traits affecting cereal yields and quality. Dissecting the genetic basis of thousand kernel weight (TKW) and its related traits is an effective method to improve wheat yield. In this study, we performed quantitative trait loci (QTL) analysis using recombinant inbred lines derived from the cross ‘PuBing3228 × Gao8901’ (PG-RIL) to dissect the genetic basis of kernel traits. A total of 17 stable QTLs related to kernel traits were identified, notably, two stable QTLs QTkw.cas-1A.2 and QTkw.cas-4A explained the largest portion of the phenotypic variance for TKW and kernel length (KL), and the other two stable QTLs QTkw.cas-6A.1 and QTkw.cas-7D.2 contributed more effects on kernel width (KW). Conditional QTL analysis revealed that the stable QTLs for TKW were mainly affected by KW. The QTLs QTkw.cas-7D.2 and QKw.cas-7D.1 associated with TKW and KW were delimited to the physical interval of approximately 3.82 Mb harboring 47 candidate genes. Among them, the candidate gene TaFT-D1 had a 1 bp insertions/deletion (InDel) within the third exon, which might be the reason for diversity in TKW and KW between the two parents. A Kompetitive Allele-Specific PCR (KASP) marker of TaFT-D1 allele was developed and verified by PG-RIL and a natural population consisted of 141 cultivar/lines. It was found that the favorable TaFT-D1 (G)-allele has been positively selected during Chinese wheat breeding. Thus, these results can be used for further positional cloning and marker-assisted selection in wheat breeding programs. Seventeen stable QTLs related to kernel traits were identified. The stable QTLs for thousand kernel weight were mainly affected by kernel width. TaFT-D1 could be the candidate gene for QTLs QTkw.cas-7D.2 and QKw.cas-7D.1.  相似文献   
106.
Intraneuronal accumulation of wild‐type tau plays a key role in Alzheimer's disease, while the mechanisms underlying tauopathy and memory impairment remain unclear. Here, we report that overexpressing full‐length wild‐type human tau (hTau) in mouse hippocampus induces learning and memory deficits with remarkably reduced levels of multiple synapse‐ and memory‐associated proteins. Overexpressing hTau inhibits the activity of protein kinase A (PKA) and decreases the phosphorylation level of cAMP‐response element binding protein (CREB), GluA1, and TrkB with reduced BDNF mRNA and protein levels both in vitro and in vivo. Simultaneously, overexpressing hTau increased PKAR2α (an inhibitory subunit of PKA) in nuclear fraction and inactivated proteasome activity. With an increased association of PKAR2α with PA28γ (a nuclear proteasome activator), the formation of PA28γ‐20S proteasome complex remarkably decreased in the nuclear fraction, followed by a reduced interaction of PKAR2α with 20S proteasome. Both downregulating PKAR2α by shRNA and upregulating proteasome by expressing PA28γ rescued hTau‐induced PKA inhibition and CREB dephosphorylation, and upregulating PKA improved hTau‐induced cognitive deficits in mice. Together, these data reveal that intracellular tau accumulation induces synapse and memory impairments by inhibiting PKA/CREB/BDNF/TrkB and PKA/GluA1 signaling, and deficit of PA28γ‐20S proteasome complex formation contributes to PKAR2α elevation and PKA inhibition.  相似文献   
107.
Dy3+‐doped Y3Al5O12 phosphors were prepared at a relatively low temperature using molten salt synthesis. The phase of the prepared Dy3+‐doped Y3Al5O12 phosphors was confirmed using X‐ray powder diffraction. Results indicated that Dy3+ doping did not change the Y3Al5O12 phase. Following excitation at 352 nm, emission spectra of the Dy3+‐doped Y3Al5O12 phosphors consisted of blue, yellow, and red emission bands. The influence of Dy3+ concentration and excitation wavelength on emission was investigated. The ratio of yellow light to blue light varied with change in Dy3+ doping concentration, due to changes in the structure around Dy3+. Emission intensities also changed when the excitation wavelength was changed. This variation is luminescence generated a system for tunable white light for Dy3+‐doped Y3Al5O12 phosphors.  相似文献   
108.
109.
Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh‐Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α‐smooth muscle actin‐labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3β‐HSD double‐positive fetal LCs could be observed in Amh‐Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3β‐HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs’ central role in fetal testis development.  相似文献   
110.
Revegetation represents an effective measure for preventing soil erosion on the Loess Plateau. However, the effects of revegetation‐induced changes in soil and root properties on soil resistance to concentrated flow erosion (SRC) remain unclear. This study sampled soils and roots across a 25‐year chronosequence from farmland to grasslands of different ages (3, 7, 10, 18, and 25 years) to quantify variations in soil and root properties (soil bulk density, SBD; soil disintegration rate, SDR; saturated hydraulic conductivity, SHC; organic matter content, OMC; water‐stable aggregate, WSA; mean weight diameter, MWD; root mass density, RMD; root length density, RLD; and root surface area density, RSAD) and their effects on SRC. Farmland and grassland SRCs were obtained using a hydraulic flume. Soil properties and root density gradually improved with restoration time. In terms of the comprehensive soil property index calculated via principal component analysis, grassland values were 0.66 to 1.94 times greater than farmland values. Grassland SRCs increased and gradually stabilized (>18 years) over time and were 1.60 to 8.26 times greater than farmland SRC. SRC improvement was significantly related to increases in OMC, SHC, WSA, and MWD and decreases in SBD and SDR over time. SRC was effectively simulated by the Hill curve of RMD, RLD, and RSAD. SDR, SHC, and RMD (0.5–1.0 mm) affected SRC the most. This study scientifically describes how revegetation improves soil quality and soil resistance to flow erosion, and suggests that vegetations rich in 0.5–1.0 mm roots should be preferred during revegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号