首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40597篇
  免费   3300篇
  国内免费   3648篇
  2024年   69篇
  2023年   466篇
  2022年   863篇
  2021年   1886篇
  2020年   1378篇
  2019年   1790篇
  2018年   1670篇
  2017年   1306篇
  2016年   1746篇
  2015年   2572篇
  2014年   3057篇
  2013年   3235篇
  2012年   3769篇
  2011年   3351篇
  2010年   2190篇
  2009年   1871篇
  2008年   2263篇
  2007年   1936篇
  2006年   1762篇
  2005年   1521篇
  2004年   1306篇
  2003年   1205篇
  2002年   1009篇
  2001年   812篇
  2000年   602篇
  1999年   591篇
  1998年   382篇
  1997年   364篇
  1996年   319篇
  1995年   280篇
  1994年   284篇
  1993年   184篇
  1992年   251篇
  1991年   222篇
  1990年   153篇
  1989年   125篇
  1988年   84篇
  1987年   118篇
  1986年   88篇
  1985年   72篇
  1984年   59篇
  1983年   44篇
  1982年   39篇
  1981年   26篇
  1980年   23篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ’s neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe) cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe) cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP) phosphorylation, APP-carboxy-terminal fragment (APP-CTF) production and β-amyloid precursor protein cleaving enzyme 1 (BACE1) expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ’s inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β) pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β.  相似文献   
982.
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.  相似文献   
983.

Background

After the publication of the CONSORT 2010 statement, few studies have been conducted to assess the reporting quality of randomized clinical trials (RCTs) on treatment of diabetes mellitus with Traditional Chinese Medicine (TCM) published in Chinese journals.

Objective

To investigate the current situation of the reporting quality of RCTs in leading medical journals in China with the CONSORT 2010 statement as criteria.

Methods

The China National Knowledge Infrastructure (CNKI) electronic database was searched for RCTs on the treatment of diabetes mellitus with TCM published in the Journal of Traditional Chinese Medicine, Chinese Journal of Integrated Traditional & Western Medicine, and the China Journal of Chinese Materia Medica from January to December 2011. We excluded trials reported as “animal studies”, “in vitro studies”, “case studies”, or “systematic reviews”. The CONSORT checklist was applied by two independent raters to evaluate the reporting quality of all eligible trials after discussing and comprehending the items thoroughly. Each item in the checklist was graded as either “yes” or “no” depending on whether it had been reported by the authors.

Results

We identified 27 RCTs. According to the 37 items in the CONSORT checklist, the average reporting percentage was 45.0%, in which the average reporting percentage for the “title and abstract”, the “introduction”, the “methods”, the “results”, the “discussion” and the “other information” was 33.3%, 88.9%, 36.4%, 54.4%, 71.6% and 14.8%, respectively. In the Journal of Traditional Chinese Medicine, Chinese Journal of Integrated Traditional & Western Medicine, and the China Journal of Chinese Materia Medica the average reporting percentage was 42.2%, 56.8%, and 46.0%, respectively.

Conclusions

The reporting quality of RCTs in these three journals was insufficient to allow readers to assess the validity of the trials. We recommend that editors require authors to use the CONSORT statement when reporting their trial results as a condition of publication.  相似文献   
984.
985.
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.  相似文献   
986.

Background

Autonomic nervous system dysfunction is implicated in the etiopathogenesis of inflammatory bowel diseases (IBD). Therapies that increase cardiovagal activity, such as Mind-Body interventions, are currently confirmed to be effective in clinical trials in IBD. However, a poor understanding of pathophysiological mechanisms limits the popularization of therapies in clinical practice. The aim of the present study was to explore the mechanisms of these therapies against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats using a chronic vagus nerve stimulation model in vivo, as well as the lipopolysaccharide (LPS)-induced inflammatory response in human epithelial colorectal adenocarcinoma cells (Caco-2) by acetylcholine in vitro.

Methods and Results

Colitis was induced in rats with rectal instillation of TNBS, and the effect of chronic VNS (0.25 mA, 20 Hz, 500 ms) on colonic inflammation was evaluated. Inflammatory responses were assessed by disease activity index (DAI), histological scores, myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS), TNF-α and IL-6 production. The expression of Mitogen-activated protein kinases (MAPK) family members, IκB-α, and nuclear NF-κB p65 were studied by immunoblotting. Heart rate variability (HRV) analysis was also applied to assess the sympathetic-vagal balance. DAI, histological scores, MPO activity, iNOS, TNF-α and IL-6 levels were significantly decreased by chronic VNS. Moreover, both VNS and acetylcholine reduced the phosphorylation of MAPKs and prevented the nuclear translocation of NF-κB p65. Methyllycaconitine (MLA) only reversed the inhibitory effect on p-ERK and intranuclear NF-κB p65 expression by ACh in vitro, no significant change was observed in the expression of p-p38 MAPK or p-JNK by MLA.

Conclusion

Vagal activity modification contributes to the beneficial effects of the cholinergic anti-inflammatory pathway in IBD-related inflamed colonic mucosa based on the activation of MAPKs and nuclear translocation of NF-κB. Our work may provide key pathophysiological mechanistic evidence for novel therapeutic strategies that increase the cardiovagal activity in IBD patients.  相似文献   
987.

Background

Most studies have suggested that elevated body mass index (BMI) was associated with the risk of death from all cause and from specific causes. However, there was little evidence illustrating the effect of BMI on the mortality in elderly hypertensive patients in Chinese population.

Methods

The information of 10,957 hypertensive patients at baseline not less than 60 years were from Xinzhuang, a town in Minhang district of Shanghai, was extracted from the Electronic Health Record (EHR) system. All study participants were divided into eight categories of baseline BMI (with cut-points at 18, 20, 22, 24, 26, 28 and 30 kg/m2). Relative hazard ratio of death from all cause, cardiovascular and non-cardiovascular cause by baseline BMI groups were calculated, standardized for sex, age, smoking, drinking, physical activity, systolic blood pressure, history of cardiovascular disorders, serum lipid disturbance, diabetes mellitus and antihypertensive drug treatment.

Results

During follow up (median: 3.7 years), 561 deaths occurred. Underweight (BMI<18 kg/m2) was associated with significantly increased mortality from all cause mortality (OR: 2.00; 95% CI: 1.43–2.79) and non cardiovascular mortality (OR: 2.76; 95% CI: 1.87–4.07), but not with cardiovascular mortality. For the cause specific analysis, the underweight was associated significantly with neoplasms (OR: 2.15; 95% CI: 1.16–4.00) and respiratory disorders (OR: 3.41; 95% CI: 1.64–7.06). The results for total mortality and specific cause mortality were not influenced by sex, age and smoking status.

Conclusion

Our study revealed an association between underweight and increased mortality from non-cardiovascular disorders in elderly hypertensive patients in Chinese community. Overweight and obesity were not associated with all cause or cause specific death.  相似文献   
988.
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11) were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.  相似文献   
989.
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate.  相似文献   
990.

Background

Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line.

Methodology/Principal Findings

Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis.

Conclusions/Significance

UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号