1. 1. The objective of this paper is to investigate the indoor environment from the viewpoint of interaction between physical environment and the human responses. The field survey has been conducted over 1 year.
2. 2. A continuous measurement has been carried out for 1 week and distribution of variables have been measured for 1 day.
3. 3. The attitude of workers was investigated by a questionnaire.
4. 4. As the result, average luminance represented more than 1000 lx in the new building, in contrast with less tha 300 lx in the existing building.
5. 5. There was a significant difference of the occupants' response to the light environment between the two buildings.
6. 6. Measured thermal conditions are on the edge of the ASHRAE comfort envelope in summer, and in the neighborhood of the lower dry limit of the envelope in spring.
7. 7. The occupants' evaluations were remarkably changed before and after the moving. The office environment is better than that of the factory.
Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana(Arabidopsis) arginine decarboxylase 1(ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts N~δ-acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize N~δ-acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis. 相似文献
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies. 相似文献
Dy3+‐doped Y3Al5O12 phosphors were prepared at a relatively low temperature using molten salt synthesis. The phase of the prepared Dy3+‐doped Y3Al5O12 phosphors was confirmed using X‐ray powder diffraction. Results indicated that Dy3+ doping did not change the Y3Al5O12 phase. Following excitation at 352 nm, emission spectra of the Dy3+‐doped Y3Al5O12 phosphors consisted of blue, yellow, and red emission bands. The influence of Dy3+ concentration and excitation wavelength on emission was investigated. The ratio of yellow light to blue light varied with change in Dy3+ doping concentration, due to changes in the structure around Dy3+. Emission intensities also changed when the excitation wavelength was changed. This variation is luminescence generated a system for tunable white light for Dy3+‐doped Y3Al5O12 phosphors. 相似文献
Plant Cell, Tissue and Organ Culture (PCTOC) - This report focuses on the crucial role of lipids and starch metabolism in the growth and ultrastructure of the cell wall (CW) in rice calli.... 相似文献
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex. 相似文献
The ADP-ribosylation factor-like proteins (ARLs) have been proved to regulate the malignant phenotypes of several cancers. However, the exact role of ARLs in gastric cancer (GC) remains elusive. In this study, we systematically investigate the expression status, interactive relations, potential pathways, genetic variations and clinical values of ARLs in GC. We find that ARLs are significantly dysregulated in GC and involved in various cancer-related pathways. Subsequently, machine learning models identify ARL4C as one of the two most significant clinical indicators among ARLs for GC. Furthermore, ARL4C silencing remarkably inhibits the growth and metastasis of GC cells both in vitro and in vivo. Moreover, enrichment analysis indicates that ARL4C is highly correlated with TGF-β1 signalling. Correspondingly, TGF-β1 treatment dramatically increases ARL4C expression and ARL4C knockdown inhibits the phosphorylation level of Smads, downstream factors of TGF-β1. Meanwhile, the coexpression of ARL4C and TGF-β1 worsens the prognosis of GC patients. Our work comprehensively demonstrates the crucial role of ARLs in the carcinogenesis of GC and the specific mechanisms underlying the GC-promoting effects of TGF-β1. More importantly, we uncover the great promise of ARL4C-targeted therapy in improving the efficacy of TGF-β1 inhibitors for GC patients. 相似文献
The objective of the current study was to demonstrate the utility of a new integrative ambulatory measurement (IAM) framework by developing and evaluating an individual calibration function in fall detection application. Ten healthy elderly persons were involved in a laboratory study and tested in a protocol comprising various types of activities of daily living and slip-induced backward falls. Inertial measurement units attached to the trunk and thigh segments were used to measure trunk angular kinematics and thigh accelerations. The effect of individual calibration was evaluated with previously developed fall detection algorithm. The results indicated that with individual calibration, the fall detection performance achieved approximately the same level of sensitivity (100% vs. 100%) and specificity (95.25% vs. 95.65%); however, response time was significantly lower than without (249 ms vs. 255 ms). It was concluded that the automatic individual calibration using the IAM framework improves the performance of fall detection, which has a greater implication in preventing/minimising injuries associated with fall accidents. 相似文献