首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32960篇
  免费   2883篇
  国内免费   3772篇
  2024年   67篇
  2023年   426篇
  2022年   959篇
  2021年   1651篇
  2020年   1187篇
  2019年   1583篇
  2018年   1427篇
  2017年   1098篇
  2016年   1449篇
  2015年   2042篇
  2014年   2474篇
  2013年   2543篇
  2012年   3151篇
  2011年   2787篇
  2010年   1749篇
  2009年   1578篇
  2008年   1843篇
  2007年   1523篇
  2006年   1421篇
  2005年   1212篇
  2004年   1024篇
  2003年   963篇
  2002年   847篇
  2001年   650篇
  2000年   537篇
  1999年   502篇
  1998年   343篇
  1997年   348篇
  1996年   259篇
  1995年   256篇
  1994年   233篇
  1993年   164篇
  1992年   222篇
  1991年   183篇
  1990年   172篇
  1989年   120篇
  1988年   97篇
  1987年   98篇
  1986年   70篇
  1985年   71篇
  1984年   50篇
  1983年   56篇
  1982年   26篇
  1981年   18篇
  1980年   17篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.

Aims

There is a need to predict trace metal concentration in plant organs at given development stages. The aim of this work was to describe the Cd hyperaccumulation kinetics in the different plant organs, throughout the complete cultivation cycle, independently of a possible soil effect.

Methods

Plants of Noccaea caerulescens were exposed in aeroponics to three constantly low Cd concentrations and harvested at 6 to 11 dates, until siliquae formation.

Results

Dry matter allocation between roots and shoots was constant over time and exposure concentrations, as well as Cd allocation. However 86 % of the Cd taken up was allocated to the shoots. Senescent rosette leaves showed similar Cd concentrations to the living ones, suggesting no redistribution from old to young organs. The Cd root influx was proportional to the exposure concentration and constant over time, indicating that plant development had no effect on this. The bio-concentration factor (BCF), i.e. [Cd]plant/[Cd2+]solution for the whole plant, roots or shoots was independent of the exposure concentration and of the plant stage.

Conclusions

Cadmium uptake in a given plant part could therefore be predicted at any plant stage by multiplying the plant part dry matter by the corresponding BCF and the Cd2+ concentration in the exposure solution.  相似文献   
993.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   
994.
Magnesium transporters and their role in Al tolerance in plants   总被引:2,自引:0,他引:2  
Magnesium (Mg) is an essential macronutrient for plant growth, which has diverse biological functions. However, little is known about the transport system of this nutrient in plants. In the genome of plants such as rice and Arabidopsis, there are homologues of bacterial Mg transporters (CorA) and some of them have been functionally characterized, but the physiological role of these transporters are poorly understood. On the other hand, Mg is able to alleviate Al toxicity in a number of plant species, but the mechanisms underlying this alleviation are not well understood. Recently, this alleviation has been associated with a Mg transporter in rice. In this paper, we present our opinions on Mg transporters, which are required for uptake, translocation, distribution and storage in plants. Possible mechanisms for Mg-mediated alleviation of Al toxicity are also discussed.  相似文献   
995.

Background

Inorganic fertilizer is one of the most important anthropogenic inputs which influences soil nutrient turnover in agricultural ecosystems. However, as the key process involved in the maintenance, transformation and stability of soil nitrogen (N), the incorporation and allocation of fertilizer N between different soil organic N (SON) fractions in a growing season remains largely unknown.

Methods

In this study, a field experiment was conducted in triplicate of micro-plots and a total of 200 kg N ha?1 (15?N-labeled (NH4)2SO4, 98 atom %) was applied as a basal dressing and two top dressings, at jointing and filling stages, respectively, to a maize crop during one growing season. The distribution and seasonal dynamics of fertilizer N in different SON fractions (i.e., amino acids, amino sugars, hydrolyzable ammonium N and acid insoluble-N) were measured by liquid/gas chromatography–mass spectrometry (LC/GC-MS) and element analysis-combustion-isotope ratio mass spectrometry (EA-C-IRMS) techniques. Path analysis was used to evaluate the transformation processes between organic N fractions derived from fertilizer and N supply strategy in soil-plant system.

Results

The accumulation of fertilizer-derived N in different organic fractions was season-specific. At jointing stage, preferential enrichment of 15?N was found in soil amino acids plus amino sugars, indicating the active biological immobilization of basal dressing fertilizer N. Nevertheless, there is still a small proportion of fertilizer N stabilized in the acid insoluble fraction. The accumulation of the residual fertilizer N in hydrolyzable ammonium N reached a maximum at filling stage and then declined significantly, implying the rapid release of the fertilizer N remained in mineral forms. The contents of amino acids changed slightly, but they played a very important role in mediating SON transformation.

Conclusion

The hydrolyzable ammonium N was a temporary pool for rapid fertilizer N retention and simultaneously was apt to release N for crop uptake in the current season. In contrast, the amino acids could serve as a transitional pool of available N in the soil-crop system, while the acid insoluble fraction was as a stable pool of fertilizer N. Importantly, there is an interim shift among different pools to maintain soil N turnover; hence N in the amino acid fraction mediates N supply and the depolymerization of SON constituents controls the proceeding of fertilizer N cycling in the soil-plant system.  相似文献   
996.

Background and Aims

The importance of aboveground herbivores for modifying belowground ecosystems has prompted numerous studies; however, studies can be biased by context dependent conditions which lead to extremely inconsistent results. So far, the impacts of herbivory intensity by important rice pests on rice paddy soil ecosystems are lacking. The aim of this study was to test the hypothesis that intermediate herbivory intensity of the brown planthopper (Nilaparvata lugens Stål) could promote soil labile resources and microbial biomass, while high intensity would show a reverse pattern, by mediating rice plant growth. This study will also help the development of integrative pest management.

Methods

Four hopper infestation density treatments (0, 4, 8 and 12 nymphs per rice plant) and two infestation duration treatments (9 and 15 days after N. lugens infestation, DAI 9 and DAI 15) were established in a glasshouse experiment. Soil and plant were sampled destructively from four replicates and analysed for soil labile resources availability, soil microbial biomass and plant performance, respectively.

Results

The infestation density significantly affected both shoot and root mass of rice (P?<?0.05), soil dissolved organic carbon (DOC) and nitrogen (DON), and microbial biomass carbon (MBC) and nitrogen (MBN), and the effects were further enhanced by prolonged infestation duration. Compared to the control (CK) without N. lugens, plant dry mass, DOC, DON, MBC and MBN increased under low (LD) and moderate hopper densities (MD) but decreased under high density (HD) on DAI 9. Moreover, the LD treatment exerted the most promotional effects on DAI 15. Rice root to shoot ratio generally increased in treatments subjected to herbivory. The labile resources and microbial biomass showed close relationships with both shoot and root mass across treatments, in particular with root mass on DAI 15. Such a trend indicated that the shift of photosynthate allocation to belowground contributed to changes of soil resource availability and microbial biomass.

Conclusions

Intermediate herbivory intensity showed positive effects on rice seedling performance and, further, promoted soil labile resource availability and microbial biomass. The importance of extrapolating temporal and spatial scale, i.e. from the short-term greenhouse experiment to an entire rice growing season in the field, was highlighted.  相似文献   
997.
998.
999.
1000.
As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号