首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61503篇
  免费   18079篇
  国内免费   4219篇
  2024年   84篇
  2023年   478篇
  2022年   1160篇
  2021年   2194篇
  2020年   3321篇
  2019年   5146篇
  2018年   5088篇
  2017年   5122篇
  2016年   5495篇
  2015年   6056篇
  2014年   6258篇
  2013年   6818篇
  2012年   5215篇
  2011年   4459篇
  2010年   4926篇
  2009年   3366篇
  2008年   2761篇
  2007年   1997篇
  2006年   1884篇
  2005年   1703篇
  2004年   1518篇
  2003年   1407篇
  2002年   1316篇
  2001年   1096篇
  2000年   796篇
  1999年   740篇
  1998年   399篇
  1997年   331篇
  1996年   342篇
  1995年   284篇
  1994年   335篇
  1993年   189篇
  1992年   267篇
  1991年   225篇
  1990年   200篇
  1989年   136篇
  1988年   91篇
  1987年   85篇
  1986年   57篇
  1985年   69篇
  1984年   55篇
  1983年   47篇
  1982年   42篇
  1981年   25篇
  1980年   19篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
781.
Lu  Ligong  Zhang  Hui  Zhan  Meixiao  Jiang  Jun  Yin  Hua  Dauphars  Danielle J.  Li  Shi-You  Li  Yong  He  You-Wen 《中国科学:生命科学英文版》2020,63(12):1833-1849
Science China Life Sciences - The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people and caused tremendous morbidity and mortality worldwide....  相似文献   
782.
Ba  Limin  Wang  Zhenbao  Liu  William J  Wu  Dongxun  Xiang  Wangzhen  Qi  Peng  Dong  Chunna  Hu  Yanxin  Lu  Ping  Xiao  Jin  Yu  Changyuan 《中国科学:生命科学英文版》2020,63(10):1604-1607
正Dear Editor,Swine major histocompatibility complex (MHC) is a highly polymorphic gene in pigs and is also called swine leukocyte antigen (SLA)(Fan et al., 2018). SLA is divided into three major categories, SLA Ⅰ (SLA-1,-2,-3), SLA Ⅱ, and SLA Ⅲ(Smith et al., 2005). SLA Ⅰ plays an important role in cellular immunity which can eliminate viruses and other foreign  相似文献   
783.
根系作为水稻(Oryza sativa)植株的重要组成部分, 在水稻生长发育过程中发挥多种作用, 包括植物的固定、水分和营养物质的获取以及氨基酸和激素的生物合成等, 其形态结构和生理功能与水稻产量和稻米品质以及抗性等密切相关。目前, 通过遗传及生化等诸多手段, 已挖掘到较多水稻根系QTLs与控制基因。该文综述了水稻根系QTL和基因的研究进展, 并对未来根系研究进行展望, 以期为进一步克隆水稻根系基因和完善水稻理想株型模型提供参考。  相似文献   
784.
Wasp venom is a complex mixture of biologically active components, including high molecular weight proteins, small peptides, bioactive amines, and amino acids. Peptides comprise up to 70% of dried venom. In social wasp venoms, three of the major peptide types are mastoparans, which cause mast cell degranulation, chemotactic peptides, which promote chemotaxis of polymorphonucleated leukocytes, and kinin‐related peptides, which are known to produce pain and increase vascular permeability. Among these, the bioactive tridecapeptide mastoparan is the most common and may even have antimicrobial activity. Herein we summarize the results of studies on vespid mastoparans, focusing on hornets (Vespa spp.) identified following a systematic literature search for mastoparans of hornets in the genus Vespa, the most active mastoparan research taxon. The common features of hornet mastoparans are C‐terminal amidation, amphipathic helical structure, and multiple functions such as mast cell degranulation and hemolysis, as well as membrane permeabilization. Most interestingly, all tested hornet mastoparans have strong antimicrobial activities, suggesting that they can provide useful insights into and opportunities for development of novel antibacterial peptides.  相似文献   
785.
This study was conducted to investigate the repellent efficacy of essential oils (Origanum vulgare, Pimpinella anisum, and Tanacetum cinerariifolium) and four plant extracts (Agastache rugosa, Capsicum annuum, Citrus reticulata, and Ginkgo biloba) against Tribolium castaneum (adults and larvae) and Plodia interpunctella (larvae). Gas chromatography/mass spectrometry analysis revealed the presence of carvacrol, anethole, and jasmolin I as the predominant constituent in O. vulgare, P. anisum, and T. cinerariifolium, respectively. Furthermore, ethyl hexopyranoside, 9,12‐octadecadienoic acid, cyclopentanol, and 2‐cresol were identified in A. rugosa, C. annuum, C. reticulata, and G. biloba, respectively. The repellent efficacy of each essential oil, plant extract, and the combination of oils was evaluated using a specially designed cylinder trap for 120 h. Among the three oils, O. vulgare and T. cinerariifolium had greatest repellent efficacy against P. interpunctella larvae. T. cinerariifolium exhibited effective repellence against the adults and larvae of T. castaneum. Therefore, O. vulgare (O) and T. cinerariifolium (T) were selected for further investigation of combined effects. Two essential oils were mixed in three different ratios of OT1 (1:3), OT2 (1:1), and OT3 (3:1). The repellent efficacies of OT1 and OT2 against the adults of T. castaneum were significantly greater than that of OT3. OT1 was effective against the larvae of T. castaneum, whereas OT2 was effective against the larvae of P. interpunctella. OT1 enhanced the repellent efficacy by approximately five times against larvae of T. castaneum, compared with that of T. cinerariifolium. Overall, OT1 was selected as the best repellent substance against all the tested insects.  相似文献   
786.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   
787.
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef‐building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad‐scale climate‐related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.  相似文献   
788.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   
789.
790.
Yield development of agricultural crops over time is not merely the result of genetic and agronomic factors, but also the outcome of a complex interaction between climatic and site‐specific soil conditions. However, the influence of past climatic changes on yield trends remains unclear, particularly under consideration of different soil conditions. In this study, we determine the effects of single agrometeorological factors on the evolution of German winter wheat yields between 1958 and 2015 from 298 published nitrogen (N)‐fertilization experiments. For this purpose, we separate climatic from genetic and agronomic yield effects using linear mixed effect models and estimate the climatic influence based on a coefficient of determination for these models. We found earlier occurrence of wheat growth stages, and shortened development phases except for the phase of stem elongation. Agrometeorological factors are defined as climate covariates related to the growth of winter wheat. Our results indicate a general and strong effect of agroclimatic changes on yield development, in particular due to increasing mean temperatures and heat stress events during the grain‐filling period. Except for heat stress days with more than 31°C, yields at sites with higher yield potential were less prone to adverse weather effects than at sites with lower yield potential. Our data furthermore reveal that a potential yield levelling, as found for many West‐European countries, predominantly occurred at sites with relatively low yield potential and about one decade earlier (mid‐1980s) compared to averaged yield data for the whole of Germany. Interestingly, effects related to high precipitation events were less relevant than temperature‐related effects and became relevant particularly during the vegetative growth phase. Overall, this study emphasizes the sensitivity of yield productivity to past climatic conditions, under consideration of regional differences, and underlines the necessity of finding adaptation strategies for food production under ongoing and expected climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号