首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65225篇
  免费   18078篇
  国内免费   4364篇
  2024年   92篇
  2023年   422篇
  2022年   1085篇
  2021年   2012篇
  2020年   3226篇
  2019年   5098篇
  2018年   5135篇
  2017年   5155篇
  2016年   5585篇
  2015年   6267篇
  2014年   6567篇
  2013年   7148篇
  2012年   5566篇
  2011年   5056篇
  2010年   5232篇
  2009年   3859篇
  2008年   3139篇
  2007年   2448篇
  2006年   2258篇
  2005年   2080篇
  2004年   1914篇
  2003年   1708篇
  2002年   1509篇
  2001年   1101篇
  2000年   812篇
  1999年   655篇
  1998年   413篇
  1997年   332篇
  1996年   264篇
  1995年   232篇
  1994年   227篇
  1993年   132篇
  1992年   183篇
  1991年   143篇
  1990年   126篇
  1989年   113篇
  1988年   73篇
  1987年   70篇
  1986年   50篇
  1985年   48篇
  1984年   45篇
  1983年   28篇
  1982年   22篇
  1981年   10篇
  1980年   6篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1967年   3篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 368 毫秒
951.
网络分析(network analysis)可以同时分析群落中的物种多样性和种间关系, 为了解生态群落的稳定性机制提供了新的分析思路和方法。本研究从西双版纳国家级自然保护区的纳板河、勐仑和勐腊(补蚌)三个地点采集了树栖性蚂蚁及树木的种类和数量数据, 对蚂蚁-树组成的二分网络进行了分析, 探讨了3个采样点物种的多样性、网络指标以及群落指标之间的关系。我们采用零模型的方法比较了3个样点的标准化网络参数差异。结果表明: 蚂蚁和树木的物种数以及树的异质性指数(Shannon-Wiener多样性指数、Simpson多样性指数)都呈现出勐仑 > 纳板河 > 补蚌的趋势。树木-蚂蚁的灭绝曲线系数大小关系同样为勐仑 > 纳板河 > 补蚌, 灭绝曲线与树的物种数及异质性指数大小趋势一致, 而与蚂蚁的异质性指数并不吻合。根据Z值的绝对值来看, 网络参数(加权嵌套性、平均连接数、特化水平、模块性、连接度)与群落参数(灭绝曲线系数、生态位重叠)的大小趋势相同, 表现出勐仑 > 纳板河 > 补蚌的趋势。综上所述, 蚂蚁-树互作网络的稳定性(灭绝曲线系数)主要由树的数量和异质性指数决定。网络的加权嵌套性和网络中节点的平均连接数也能促进群落的稳定性。而在一个特化的(数值越大表示专性互作越多)和模块化(具有较多密切互作的节点单元)的网络中, 当低营养级物种灭绝时高营养级物种数量将迅速减少。  相似文献   
952.
植物的功能性状变异和表型可塑性是其应对异质生境的主要机制, 对植物的生长和分布有重要贡献。本文以湖北星斗山国家级自然保护区的水杉(Metasequoia glyptostroboides)原生母树为研究对象, 分析了母树种群功能性状对树木形态、地形因子及人为干扰的响应机制。结果表明: 水杉原生母树叶面积、叶干重和比叶面积的变异幅度大, 可塑性较强, 而枝和叶的干物质含量稳定性最高。人为干扰和4个地形因子均对每个功能性状变异方差有5%-20%的解释度, 冠幅对枝、叶干物质含量的变异方差有高达38%和76%的解释度。5个功能性状主要受海拔、坡位和人为干扰影响, 其中, 比叶面积对环境因子和干扰的响应规律不明显, 叶面积和叶干重在强烈人为干扰的环境中普遍增大, 枝和叶的干物质含量对坡向的变化最敏感。总之, 水杉原生母树种群通过功能性状变异对环境能产生一定的可塑性响应, 但人为干扰对母树生长影响较大, 建议人工辅助更新, 并适度减少农业和建筑对现存母树的影响。  相似文献   
953.
罗霄山脉位于中国大陆东南部, 是一条南北走向的大型山脉, 面积约6.76万km2。该山脉位于欧亚大陆东部季风区, 生物多样性丰富, 是亚洲东部第三纪冰期动物重要的避难所。为了解罗霄山脉翼手目物种多样性状况, 本研究组于2013-2018年, 使用雾网、手网和竖琴网等工具开展了针对性调查与标本采集, 同时运用形态分类学和分子系统发生学方法鉴定物种。根据调查结果并结合文献记载: 罗霄山脉地区现有翼手目物种4科14属40种, 其中罗霄山脉翼手目新记录种25种, 省级翼手目分布新记录种9种。同时, 本研究基于5年的调查采集位点, 使用生物多样 性与气候变化虚拟实验室(the Biodiversity & Climate Change Virtual Laboratory)在线生境预测平台, 对罗霄山脉翼手目物种当前的适生区, 以及3种不同量温室气体排放情景下(representative concentration pathway, RCP 2.6 / 6.0 / 8.5) 2050年的适生区进行预测, 其中随机森林算法(random forest)的模型解释力较优, 其预测结果显示: 影响该区域翼手目分布的主要环境因子为降水季节性和年平均温度; 山脉中部及南部为翼手目的高适生区, 面积约为罗霄山脉的30%; 与当前适生区相比, RCP 2.6情景下2050年该类群适生区有所扩增, RCP 6.0和RCP 8.5情景下均会导致翼手目适生区急剧缩减, 且分布区将迁移至高海拔区域以响应气候变化。而本项目的开展不仅初步掌握了罗霄山脉翼手目物种多样性本底状况, 也为开展后续的翼手目研究和保护管理提供了参考。  相似文献   
954.
Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment.  相似文献   
955.
Both coral‐associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co‐occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole‐ecosystem scale.  相似文献   
956.
Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.  相似文献   
957.
Aedes aegypti is among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.  相似文献   
958.
959.
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in‐depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.  相似文献   
960.
Pathogen‐mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole‐genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号