全文获取类型
收费全文 | 6191篇 |
免费 | 517篇 |
国内免费 | 604篇 |
专业分类
7312篇 |
出版年
2024年 | 55篇 |
2023年 | 83篇 |
2022年 | 200篇 |
2021年 | 256篇 |
2020年 | 247篇 |
2019年 | 290篇 |
2018年 | 241篇 |
2017年 | 194篇 |
2016年 | 284篇 |
2015年 | 334篇 |
2014年 | 459篇 |
2013年 | 446篇 |
2012年 | 523篇 |
2011年 | 456篇 |
2010年 | 300篇 |
2009年 | 313篇 |
2008年 | 369篇 |
2007年 | 295篇 |
2006年 | 288篇 |
2005年 | 229篇 |
2004年 | 241篇 |
2003年 | 208篇 |
2002年 | 196篇 |
2001年 | 102篇 |
2000年 | 88篇 |
1999年 | 85篇 |
1998年 | 71篇 |
1997年 | 70篇 |
1996年 | 46篇 |
1995年 | 33篇 |
1994年 | 26篇 |
1993年 | 23篇 |
1992年 | 46篇 |
1991年 | 33篇 |
1990年 | 20篇 |
1989年 | 18篇 |
1988年 | 11篇 |
1987年 | 19篇 |
1986年 | 5篇 |
1985年 | 13篇 |
1984年 | 12篇 |
1981年 | 5篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1970年 | 5篇 |
1968年 | 8篇 |
1967年 | 6篇 |
1966年 | 7篇 |
1965年 | 5篇 |
1964年 | 4篇 |
排序方式: 共有7312条查询结果,搜索用时 15 毫秒
61.
Cell expansion, and its coordination with cell division, plays a critical role in the growth and development of plant organs. However, the genes controlling cell expansion during organogenesis are largely unknown. Here, we demonstrate that a novel Arabidopsis gene, ARGOS-LIKE (ARL), which has some sequence homology to the ARGOS gene, is involved in this process. Reduced expression or overexpression of ARL in Arabidopsis results in smaller or larger cotyledons and leaves as well as other lateral organs, respectively. Anatomical examination of cotyledons and leaves in ARL transgenic plants demonstrates that the alteration in size can be attributed to changes in cell size rather than cell number, indicating that ARL plays a role in cell expansion-dependent organ growth. ARL is upregulated by brassinosteroid (BR) and this induction is impaired in the BR-insensitive mutant bri1, but not in the BR-deficient mutant det2. Ectopic expression of ARL in bri1-119 partially restores cell growth in cotyledons and leaves. Our results suggest that ARL acts downstream of BRI1 and partially mediates BR-related cell expansion signals during organ growth. 相似文献
62.
63.
Zhang YH Bhunia A Wan KF Lee MC Chan SL Yu VC Mok YK 《Journal of molecular biology》2006,364(3):536-549
The ratio of the levels of pro-survival and pro-apoptotic members of the Bcl-2 protein family is thought to be an important regulatory factor for determining the sensitivity of the mammalian cells to apoptotic stimuli. High levels of expression of pro-survival members such as Bcl(XL) in human cancers were frequently found to be a good prognostic indicator predicting poor response to chemotherapy. The pro-survival members of the Bcl-2 family mediate their effects through heterodimerization with the BH3 region of the pro-apoptotic members. Structural analyses of the binding complex of the BH3 peptide and Bcl(XL) showed that a hydrophobic groove termed the BH3 binding cleft is the docking site for the BH3 region. Chemical mimetics of the BH3 region such as BH3I-1 that target the BH3 binding cleft indeed exhibit pro-apoptotic activities. Chelerythrine (CHE) and sanguinarine (SAN) are natural benzophenanthridine alkaloids that are structurally homologous to each other. CHE was previously identified as an inhibitor of Bcl(XL) function from a high-throughput screen of natural products, but its mode of interaction with Bcl(XL) is not known. By determining the effect of site-directed mutagenesis on ligand binding and using saturation transfer difference (STD) NMR experiments, we have verified locations of these docked ligands. Surprisingly, CHE and SAN bind separately at the BH groove and BH1 region of Bcl(XL) respectively, different from the BH3 binding cleft where other known inhibitors of Bcl(XL) target. Interestingly, certain residues on the flexible loop between helices alpha1 and alpha2 of Bcl(XL) are also perturbed upon CHE, but not SAN or BH3I-1 binding. Although CHE and SAN are similarly effective as BH3I-1 in displacing bound BH3 peptide, they are much more effective in inducing apoptosis, raising the possibility that CHE and SAN might be able to antagonize other pro-survival mechanisms in addition to the one that involves BH3 region binding. 相似文献
64.
Mei M Su B Harrison K Chao M Siedlak SL Previll LA Jackson L Cai DX Zhu X 《Journal of neurochemistry》2006,99(5):1377-1388
Extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase pathway, has been increasingly implicated in the pathogenesis of Alzheimer's disease due to its critical role in brain function. While we previously demonstrated that ERK is activated in Alzheimer's disease, the upstream cascade leading to its activation had not been fully examined. In this study, we focused on Raf-1, one of the physiological activators of the ERK pathway. Raf-1 is activated by phosphorylation at Ser338 and Tyr340/341 and inhibited by phosphorylation at Ser259. Interestingly, phosphorylation at all three sites on Raf-1 was increased as evidenced by both immunocytochemistry and immunoblot analysis in Alzheimer's disease brains compared to age-matched controls. Both phospho-Raf-1 (Ser259) and phospho-Raf-1 (Ser338) were localized to intracytoplasmic granular structures, whereas phospho-Raf-1 (Tyr340/341) was localized to neurofibrillary tangles and granules in pyramidal neurons in Alzheimer's disease hippocampus. There is extensive overlap between phospho-Raf-1 (Ser338) and phospho-Mek1/2, the downstream effector of Raf-1, suggestive of a mechanistic link. Additionally, increased levels of Raf-1 are associated with Ras and MEK1 in Alzheimer's disease as evidenced by its coimmunoprecipitation with Ras and Mek1, respectively. Based on these findings, we speculate that Raf-1 is activated to effectively mediate Ras-dependent signals in Alzheimer's disease. 相似文献
65.
ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency
下载免费PDF全文
![点击此处可从《The EMBO journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Cao L Kim S Xiao C Wang RH Coumoul X Wang X Li WM Xu XL De Soto JA Takai H Mai S Elledge SJ Motoyama N Deng CX 《The EMBO journal》2006,25(10):2167-2177
BRCA1 is a checkpoint and DNA damage repair gene that secures genome integrity. We have previously shown that mice lacking full-length Brca1 (Brca1(delta11/delta11)) die during embryonic development. Haploid loss of p53 completely rescues embryonic lethality, and adult Brca1(delta11/delta11)p53+/- mice display cancer susceptibility and premature aging. Here, we show that reduced expression and/or the absence of Chk2 allow Brca1(delta11/delta11) mice to escape from embryonic lethality. Compared to Brca1(delta11/delta11)p53+/- mice, lifespan of Brca1(delta11/delta11)Chk2-/- mice was remarkably extended. Analysis of Brca1(delta11/delta11)Chk2-/- mice revealed that p53-dependent apoptosis and growth defect caused by Brca1 deficiency are significantly attenuated in rapidly proliferating organs. However, in later life, Brca1(delta11/delta11)Chk2-/- female mice developed multiple tumors. Furthermore, haploid loss of ATM also rescued Brca1 deficiency-associated embryonic lethality and premature aging. Thus, in response to Brca1 deficiency, the activation of the ATM-Chk2-p53 signaling pathway contributes to the suppression of neoplastic transformation, while leading to compromised organismal homeostasis. Our data highlight how accurate maintenance of genomic integrity is critical for the suppression of both aging and malignancy, and provide a further link between aging and cancer. 相似文献
66.
Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize 总被引:4,自引:0,他引:4
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress. 相似文献
67.
Lipid rafts in neuregulin signaling at synapses 总被引:3,自引:0,他引:3
Neuregulins are a family of EGF domain-containing factors that play an important role in development. In the nervous system, they promote glial differentiation, induce neurotransmitter receptor expression, and regulate synaptic plasticity. Recent studies indicate that ErbB protein tyrosine kinases, neuregulin receptors, translocate to lipid raft microdomains in the plasma membrane in response to neuregulin. Localization of ErbB proteins in lipid rafts appeared to be necessary for neuregulin signaling and regulation of synaptic plasticity. We will review recent studies of lipid rafts and neuregulin function and discuss possible roles of lipid rafts in compartmentalized neuregulin signaling and translocation of ErbB proteins to synapses. 相似文献
68.
Wan M Tang Y Tytler EM Lu C Jin B Vickers SM Yang L Shi X Cao X 《The Journal of biological chemistry》2004,279(15):14484-14487
69.
Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed (Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controlled by both dimm and ap. Previous genetic analysis of animals deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or release is regulated by dopamine input. 相似文献
70.
Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1 总被引:1,自引:0,他引:1
RTD-1 is a cyclic beta-hairpin antimicrobial peptide isolated from rhesus macaque leukocytes. Using (31)P, (2)H, (13)C, and (15)N solid-state NMR, we investigated the interaction of RTD-1 with lipid bilayers of different compositions. (31)P and (2)H NMR of uniaxially oriented membranes provided valuable information about how RTD-1 affects the static and dynamic disorder of the bilayer. Toward phosphatidylcholine (PC) bilayers, RTD-1 causes moderate orientational disorder independent of the bilayer thickness, suggesting that RTD-1 binds to the surface of PC bilayers without perturbing its hydrophobic core. Addition of cholesterol to the POPC membrane does not affect the orientational disorder. In contrast, binding of RTD-1 to anionic bilayers containing PC and phosphatidylglycerol lipids induces much greater orientational disorder without affecting the dynamic disorder of the membrane. These correlate with the selectivity of RTD-1 for anionic bacterial membranes as opposed to cholesterol-rich zwitterionic mammalian membranes. Line shape simulations indicate that RTD-1 induces the formation of micrometer-diameter lipid cylinders in anionic membranes. The curvature stress induced by RTD-1 may underlie the antimicrobial activity of RTD-1. (13)C and (15)N anisotropic chemical shifts of RTD-1 in oriented PC bilayers indicate that the peptide adopts a distribution of orientations relative to the magnetic field. This is most likely due to a small fraction of lipid cylinders that change the RTD-1 orientation with respect to the magnetic field. Membrane-bound RTD-1 exhibits narrow line widths in magic-angle spinning spectra, but the sideband intensities indicate rigid-limit anisotropies. These suggest that RTD-1 has a well-defined secondary structure and is likely aggregated in the membrane. These structural and dynamical features of RTD-1 differ significantly from those of PG-1, a related beta-hairpin antimicrobial peptide. 相似文献