首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   40篇
  国内免费   8篇
  310篇
  2023年   3篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   11篇
  2018年   11篇
  2017年   10篇
  2016年   13篇
  2015年   17篇
  2014年   28篇
  2013年   12篇
  2012年   23篇
  2011年   18篇
  2010年   17篇
  2009年   10篇
  2008年   13篇
  2007年   9篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1976年   3篇
  1974年   2篇
  1972年   3篇
  1970年   2篇
  1968年   1篇
  1940年   1篇
  1907年   1篇
排序方式: 共有310条查询结果,搜索用时 15 毫秒
101.
102.
Background aimX-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect' (XMEN) disease is caused by mutations in the magnesium transporter 1 (MAGT1) gene. Loss of MAGT1 function results in a glycosylation defect that abrogates expression of key immune proteins such as the NKG2D receptor on CD8+ T and NK cells, which is critical for the recognition and killing of virus-infected and transformed cells, a biomarker for MAGT1 function. Patients with XMEN disease frequently have increased susceptibility to EBV infections and EBV-associated B cell malignancies, for which no specific treatment options are currently available. Experimental transfer of donor EBV-specific cytotoxic T cells may be beneficial but carries the risks of eliciting alloimmune responses. An approach for cell therapy to address viral infections and associated complications that avoids the risks of alloimmunity is needed.MethodsHere the authors assess the feasibility and efficiency of correcting autologous lymphocytes from XMEN patients by MAGT1 mRNA electroporation (EP) that avoids genomic integration and can be scaled for clinical application.Results and conclusionsRestoration of NKG2D expression was demonstrated in XMEN patient lymphocytes after MAGT1 mRNA electroporation that reach healthy donor levels in CD8+ T and NK cells at 1-2 days after EP. NKG2D expression persisted at ~50% for 2 weeks after EP. Functionally, mRNA-correction of XMEN NK cells rescued cytotoxic activity also to healthy donor NK cell level. The restored NKG2D receptor expression and function were unaffected by cryopreservation, which will make feasible repeat infusions of MAGT1 mRNA-corrected autologous XMEN CD8+ T and NK cells for potential short term therapy for XMEN patients without the risks of alloimmunization.  相似文献   
103.
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.  相似文献   
104.
Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.  相似文献   
105.
106.
A series of carbazole-functionalized carboxylate ligands (N-carbazolylacetic acid (L1), 4-carbazol-9-yl-benzoic acid (L2), and 3-(4-carbazol-9-yl-phenyl)-acrylic acid (L3)) and their corresponding silver complexes were designed and synthesized and the structures were determined by single crystal X-ray diffractions. The silver atoms in the complexes are in tetrahedral geometry coordinated with two oxygen from carboxylic and two phosphorous atoms from triphenylphosphine. The complexes exhibit excellent electrochemical characters in solution and strong photoluminescence in the solid state. The emission wavelengths of the compounds can be tuned (from ultraviolet to visible region) by introducing of the second coordinating ligand triphenylphosphine and by elongation of the conjugation moieties.  相似文献   
107.
The effect of propofol on neuronal activity in the rostral ventrolateral medulla (RVLM) is not well established. Therefore, we performed extracellular recording on neurons of the RVLM to investigate neuronal activity before and after administration of intravenous propofol. The mean systemic arterial pressure (MSAP), heart rate and integrated neuronal firing rate (INFR) in the RVLM were continuously recorded in anesthetized cats before and after intravenous injection of 2 mg/kg propofol or supplemental injections of 1, 2 and 4 mg/kg propofol that were given respectively. Additionally, we compared the MSAP, heart rate (HR), and INFR in the RVLM following intravenous injection of 2 mg/kg propofol or 12.5 microg/kg nitroprusside. Neuronal firing was dose-dependently and reversibly inhibited after the supplemental doses of 1, 2 and 4 mg/kg propofol. The control INFR was 14.2 +/- 9.9 Hz, and this decreased to 12.1 +/- 9.4 Hz after the first dose of propofol (P = 0.085 vs. control), and further decreased to 9.3 +/- 7.7 Hz (P = 0.001 vs. control) and 7.5 +/- 7.7 Hz (P < 0.001 vs. control) after the second and third doses of propofol, respectively. Besides, SAP and HR were dose-dependently decreased by propofol as well. However, the effects of propofol and nitroprusside on neuronal activity in the RVLM differed. Propofol inhibited neuronal firing, whereas nitroprusside activated neuronal firing. In conclusion, propofol may dose-dependently inhibit spontaneous neuronal activity and the baroreflex in the RVLM.  相似文献   
108.
Two dimensional phase separation in lipid membranes and cell membranes is of interest to biology because of the idea of membrane rafts — compositionally heterogeneous liquid crystal domains with cellular functions. Few quantitative tools exist for characterizing and differentiating coexisting phases on a molecular scale. Lipid acyl chain order can be measured directly using deuterium nuclear magnetic resonance spectroscopy (2H NMR), or inferred using fluorescence microscopy along with the environment-sensitive probe Laurdan. We found a linear relationship between the 2H NMR order parameter and Laurdan generalized polarization. This observed correlation supports the idea that lipid chain order is tightly associated with the amount and dynamics of water molecules at the glycerol backbone level of the membrane.  相似文献   
109.
A smart window that dynamically modulates light transmittance is crucial for building energy efficiently, and promising for on‐demand optical devices. The rapid development of technology brings out different categories that have fundamentally different transmittance modulation mechanisms, including the electro‐, thermo‐, mechano‐, and photochromic smart windows. In this review, recent progress in smart windows of each category is overviewed. The strategies for each smart window are outlined with particular focus on functional materials, device design, and performance enhancement. The advantages and disadvantages of each category are summarized, followed by a discussion of emerging technologies such as dual stimuli triggered smart window and integrated devices toward multifunctionality. These multifunctional devices combine smart window technology with, for example, solar cells, triboelectric nanogenerators, actuators, energy storage devices, and electrothermal devices. Lastly, a perspective is provided on the future development of smart windows.  相似文献   
110.
The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC–MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号