全文获取类型
收费全文 | 11307篇 |
免费 | 832篇 |
国内免费 | 959篇 |
专业分类
13098篇 |
出版年
2024年 | 22篇 |
2023年 | 161篇 |
2022年 | 429篇 |
2021年 | 709篇 |
2020年 | 415篇 |
2019年 | 553篇 |
2018年 | 543篇 |
2017年 | 356篇 |
2016年 | 513篇 |
2015年 | 801篇 |
2014年 | 927篇 |
2013年 | 904篇 |
2012年 | 1074篇 |
2011年 | 981篇 |
2010年 | 570篇 |
2009年 | 521篇 |
2008年 | 575篇 |
2007年 | 474篇 |
2006年 | 398篇 |
2005年 | 312篇 |
2004年 | 269篇 |
2003年 | 272篇 |
2002年 | 238篇 |
2001年 | 169篇 |
2000年 | 142篇 |
1999年 | 144篇 |
1998年 | 83篇 |
1997年 | 85篇 |
1996年 | 75篇 |
1995年 | 69篇 |
1994年 | 43篇 |
1993年 | 35篇 |
1992年 | 45篇 |
1991年 | 31篇 |
1990年 | 31篇 |
1989年 | 40篇 |
1988年 | 16篇 |
1987年 | 11篇 |
1986年 | 15篇 |
1985年 | 23篇 |
1984年 | 8篇 |
1983年 | 9篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1979年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Genome-wide association studies (GWAS) have rapidly become a powerful tool in genetic studies of complex diseases and traits. Traditionally, single marker-based tests have been used prevalently in GWAS and have uncovered tens of thousands of disease-associated SNPs. Network-assisted analysis (NAA) of GWAS data is an emerging area in which network-related approaches are developed and utilized to perform advanced analyses of GWAS data in order to study various human diseases or traits. Progress has been made in both methodology development and applications of NAA in GWAS data, and it has already been demonstrated that NAA results may enhance our interpretation and prioritization of candidate genes and markers. Inspired by the strong interest in and high demand for advanced GWAS data analysis, in this review article, we discuss the methodologies and strategies that have been reported for the NAA of GWAS data. Many NAA approaches search for subnetworks and assess the combined effects of multiple genes participating in the resultant subnetworks through a gene set analysis. With no restriction to pre-defined canonical pathways, NAA has the advantage of defining subnetworks with the guidance of the GWAS data under investigation. In addition, some NAA methods prioritize genes from GWAS data based on their interconnections in the reference network. Here, we summarize NAA applications to various diseases and discuss the available options and potential caveats related to their practical usage. Additionally, we provide perspectives regarding this rapidly growing research area. 相似文献
42.
43.
Li JY Cui YM Chen LL Gu M Li J Nan FJ Ye QZ 《The Journal of biological chemistry》2004,279(20):21128-21134
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications. 相似文献
44.
In this report, 156 hygromycin-resistant mutants were generated via restriction enzyme-mediated insertional (REMI) mutagenesis. All mutants were subjected to a bioassay on detached leaves. Five mutants (T4, T39, T71, T91, and T135) showed reduced symptom development, whereas one mutant (T120) did not exhibit any symptoms on the leaves compared with the wild type. The pathogenicity of these mutants was further assayed through the spray inoculation of whole seedlings. The results demonstrated that the pathogenicity of the T4, T39, T71, T91, and T135 mutants was reduced, whereas the T120 mutant lost its pathogenicity. Southern blot analysis revealed that the plasmids were inserted at different sites in the genome with different copy numbers. Flanking sequences approximately 550, 860, and 150 bp were obtained from T7, T91, and T120, respectively through plasmids rescue. Sequence analysis of the flanking sequences from T7 and T91 showed no homology to any known sequences in GenBank. The flanking sequence from the T120 mutant was highly homologous to MAPKK kinases, which regulates sexual/asexual development, melanization, pathogenicity from Cochliobolus heterostrophus. These results indicate that REMI and plasmids rescue have great potential for finding pathogenicity genes. 相似文献
45.
Pei-pei Han Shi-ru Jia Ying Sun Zhi-lei Tan Cheng Zhong Yu-jie Dai Ning Tan Shi-gang Shen 《World journal of microbiology & biotechnology》2014,30(9):2407-2418
The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1–100 mg L?1, and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography–mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state. 相似文献
46.
Li Zuo Ekaterini Iordanou Rachana R. Chandran Lan Jiang 《Cell and tissue research》2013,354(2):343-354
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects. 相似文献
47.
Identification,Design and Bio-Evaluation of Novel Hsp90 Inhibitors by Ligand-Based Virtual Screening
JianMin Jia XiaoLi Xu Fang Liu XiaoKe Guo MingYe Zhang MengChen Lu LiLi Xu JinLian Wei Jia Zhu ShengLie Zhang ShengMiao Zhang HaoPeng Sun QiDong You 《PloS one》2013,8(4)
Heat shock protein 90 (Hsp90), whose inhibitors have shown promising activity in clinical trials, is an attractive anticancer target. In this work, we first explored the significant pharmacophore features needed for Hsp90 inhibitors by generating a 3D-QSAR pharmacophore model. It was then used to virtually screen the SPECS databases, identifying 17 hits. Compound S1 and S13 exhibited the most potent inhibitory activity against Hsp90, with IC50 value 1.61±0.28 μM and 2.83±0.67 μM, respectively. Binding patterns analysis of the two compounds with Hsp90 revealed reasonable interaction modes. Further evaluation showed that the compounds exhibited good anti-proliferative effects against a series of cancer cell lines with high expression level of Hsp90. Meanwhile, S13 induced cell apoptosis in a dose-dependent manner in different cell lines. Based on the consideration of binding affinities, physicochemical properties and toxicities, 24 derivatives of S13 were designed, leading to the more promising compound S40, which deserves further optimization. 相似文献
48.
Hui Zhu Yugui Cui Jin Xie Ling Chen Xiangxiang Chen Xuejiang Guo Yefei Zhu Xinghai Wang Jiansun Tong Zuomin Zhou Yue Jia Yan‐he Lue Amiya Sinha Hikim Christina Wang Ronald S. Swerdloff Jiahao Sha 《Proteomics》2010,10(19):3480-3493
Mild testicular heating safely and reversibly suppresses spermatogenesis. In this study, we attempted to clarify the underlying molecular mechanism(s) involved in heat‐induced spermatogenesis suppression in human testis. We conducted global proteomic analyses of human testicular biopsies before, and at 2 and 9 wk after heat treatment. Thirty‐one and Twenty‐six known proteins were identified with significant differential expression at 2 and 9 wk after heat treatment, respectively. These were used to characterize the cellular and molecular events in the testes when seminiferous epithelia became damaged (2 wk) and recovered (9 wk). At 2 wk post‐treatment, the changed expression of a series of proteins could promote apoptosis or suppress proliferation and cell survival. At 9 wk post‐treatment, the changed expression of proteins mainly promoted cell proliferation, differentiation and survival, but resisted cell apoptosis. Among those heat‐regulated proteins, HNRNPH1 was selected for the further functional study. We found that HNRNPH1 was an anti‐apoptosis protein that could regulate the expression of other heat‐induced proteins. In conclusion, heat‐induced reversible suppression of spermatogenesis occurred by modulating the expression of proteins related to proliferation, differentiation, apoptosis and cell survival pathways. These differentially expressed proteins were found to be key molecular targets affecting spermatogenesis after heat treatment. 相似文献
49.
Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3. 相似文献
50.
The monocyte locomotion inhibitory factor (MLIF) is an anti-inflammatory oligopeptide produced by Entamoeba histolytica. Among its different effects, it inhibits locomotion of human monocytes, hence its original name. The carboxyl-terminal end group Cys-Asn-Ser is the pharmacophore of anti-inflammatory peptide Met-Gln-Cys-Asn-Ser. In this study, the N-terminal of Cys-Asn-Ser was modified. With the aim to enhance the antioxidant ability and penetrability of Cys-Asn-Ser, we designed and synthesized two tetrapeptides Tyr-Cys-Asn-Ser and His-Cys-Asn-Ser. The neuroprotective effects of Tyr-Cys-Asn-Ser and His-Cys-Asn-Ser on focal ischemia reperfusion were investigated, and their pharmacological activities compared with Cys-Asn-Ser were studied. In order to study the mechanism of neuroprotective effect of these peptides, the level of oxidative stress markers malondialdehyde (MDA) and superoxide dismutase (SOD) and pro-inflammatory factors interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and myeloperoxidase (MPO) were detected in brain tissue homogenate. 相似文献