首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12163篇
  免费   910篇
  国内免费   1101篇
  2024年   28篇
  2023年   202篇
  2022年   491篇
  2021年   820篇
  2020年   468篇
  2019年   630篇
  2018年   601篇
  2017年   405篇
  2016年   576篇
  2015年   825篇
  2014年   964篇
  2013年   971篇
  2012年   1152篇
  2011年   1050篇
  2010年   619篇
  2009年   546篇
  2008年   618篇
  2007年   529篇
  2006年   428篇
  2005年   341篇
  2004年   301篇
  2003年   304篇
  2002年   250篇
  2001年   174篇
  2000年   144篇
  1999年   154篇
  1998年   82篇
  1997年   82篇
  1996年   73篇
  1995年   57篇
  1994年   44篇
  1993年   26篇
  1992年   44篇
  1991年   27篇
  1990年   30篇
  1989年   41篇
  1988年   16篇
  1987年   12篇
  1986年   10篇
  1985年   22篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   
62.
A new isopropyl chromone ( 1 ) and a new flavanone glucoside ( 2 ) together with eleven known compounds ( 3–13 ) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one ( 1 ), 5,7-dihydroxyflavanone 7-O-β-D-(6′′-O-galloylglucopyranoside) ( 2 ), strobopinin ( 3 ), demethoxymatteucinol ( 4 ), pinocembrin-7-O-β-D-glucopyranoside ( 5 ), (2S)-hydroxynaringenin-7-O-β-D-glucopyranoside ( 6 ), afzelin ( 7 ), quercetin ( 8 ), kaplanin ( 9 ), endoperoxide G3 ( 10 ), grasshopper ( 11 ), vomifoliol ( 12 ), litseagermacrane ( 13 ) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1 , 2 , 5 , 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 μM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 μM, compared to that of the positive control, NG-monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 μM.  相似文献   
63.
Viburnum luzonicum is widely distributed in China. Its branch extracts showed potential α-amylase and α-glucosidase inhibitory activities. In order to discover new bioactive constituents, five undescribed phenolic glycosides, viburozosides A−E ( 1 – 5 ), were obtained by bioassay-guided isolation coupled with HPLC-QTOF-MS/MS analysis. Their structures were elucidated by spectroscopic analyses, including 1D NMR, 2D NMR, ECD, and ORD. All compounds were tested for their α-amylase and α-glucosidase inhibitory potency. Compound 1 showed significantly competitive inhibition against α-amylase (IC50=17.5 μM) and α-glucosidase (IC50=13.6 μM).  相似文献   
64.
This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE−/− mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE−/− mice. In the vascular tissue of ASBUE-treated mice, P-IKKβ, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.  相似文献   
65.
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named ‘migracytosis’. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future.  相似文献   
66.

The helix angle configuration of the myocardium is understood to contribute to the heart function, as finite element (FE) modeling of postnatal hearts showed that altered configurations affected cardiac function and biomechanics. However, similar investigations have not been done on the fetal heart. To address this, we performed image-based FE simulations of fetal left ventricles (LV) over a range of helix angle configurations, assuming a linear variation of helix angles from epicardium to endocardium. Results showed that helix angles have substantial influence on peak myofiber stress, cardiac stroke work, myocardial deformational burden, and spatial variability of myocardial strain. A good match between LV myocardial strains from FE simulations to those measured from 4D fetal echo images could only be obtained if the transmural variation of helix angle was generally between 110 and 130°, suggesting that this was the physiological range. Experimentally discovered helix angle configurations from the literature were found to produce high peak myofiber stress, high cardiac stroke work, and a low myocardial deformational burden, but did not coincide with configurations that would optimize these characteristics. This may suggest that the fetal development of myocyte orientations depends concurrently on several factors rather than a single factor. We further found that the shape, rather than the size of the LV, determined the manner at which helix angles influenced these characteristics, as this influence changed significantly when the LV shape was varied, but not when a heart was scaled from fetal to adult size while retaining the same shape. This may suggest that biomechanical optimality would be affected during diseases that altered the geometric shape of the LV.

  相似文献   
67.
陈鹏  宋佳  郭璞  冀瑞卿 《菌物学报》2023,42(1):297-311
蜜环菌属Armillaria真菌具有较高的食药用价值。由于蜜环菌的生长发育过程较复杂,还未完全实现商业化栽培,野生资源的供应受到季节性和地域性的影响。本研究以采自东北地区蜜环菌属的3个菌株为研究对象,通过培养物的形态特征及分子标记确定菌株JG19016为奥氏蜜环菌A. ostoyae,菌株JG19017为高卢蜜环菌A. gallica,菌株JG19018为中国蜜环菌生物种C。奥氏蜜环菌JG19016最适生长温度为25 ℃,高卢蜜环菌JG19017的最适生长温度为22 ℃,中国蜜环菌生物种C JG19018则在22-25 ℃时菌丝生长速度最快;3个菌株最适pH为5-6。奥氏蜜环菌JG19016对葡萄糖和蔗糖利用率较好,高卢蜜环菌JG19017对葡萄糖利用率较好,中国蜜环菌生物种C JG19018对葡萄糖和淀粉利用率较好;蛋白胨对3个菌株促进作用最强,为最适氮源。培养基中加入VB1,对3个菌株的菌丝生长均有明显的促进作用。奥氏蜜环菌JG19016菌丝生长的最优培养基配方为:葡萄糖20 g,蛋白胨3 g,磷酸二氢钾2 g,硫酸镁1.5 g,VB1 10 mg,琼脂20 g,水1 L。在木屑基质中培养,其配方的最优碳氮比为38:1,最佳木屑粗细比为3:1以上。出菇条件探索结果显示,菌丝及菌索长满菌袋(17 mm×33 mm×5 mm丝聚乙烯袋)需要50-60 d,之后在18 ℃、60%湿度和12 h散射光的环境中,10 d左右可观察到原基产生。增加菇房湿度到90%-95%,2-3 d可观察到1-3 cm的幼子实体,7 d左右菌柄和菌盖完全分化,10 d左右观察到菌盖展开。  相似文献   
68.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号