首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21420篇
  免费   1904篇
  国内免费   2915篇
  2024年   69篇
  2023年   362篇
  2022年   755篇
  2021年   1353篇
  2020年   932篇
  2019年   1174篇
  2018年   1072篇
  2017年   717篇
  2016年   1015篇
  2015年   1543篇
  2014年   1819篇
  2013年   1786篇
  2012年   2151篇
  2011年   1927篇
  2010年   1226篇
  2009年   1097篇
  2008年   1225篇
  2007年   1023篇
  2006年   872篇
  2005年   737篇
  2004年   668篇
  2003年   578篇
  2002年   453篇
  2001年   272篇
  2000年   228篇
  1999年   226篇
  1998年   151篇
  1997年   137篇
  1996年   112篇
  1995年   104篇
  1994年   68篇
  1993年   49篇
  1992年   73篇
  1991年   39篇
  1990年   44篇
  1989年   51篇
  1988年   24篇
  1987年   18篇
  1986年   14篇
  1985年   27篇
  1984年   8篇
  1983年   11篇
  1982年   8篇
  1981年   7篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recently, CRISPR‐Cas12a (Cpf1) from Prevotella and Francisella was engineered to modify plant genomes. In this report, we employed CRISPR‐LbCas12a (LbCpf1), which is derived from Lachnospiraceae bacterium ND2006, to edit a citrus genome for the first time. First, LbCas12a was used to modify the CsPDS gene successfully in Duncan grapefruit via Xcc‐facilitated agroinfiltration. Next, LbCas12a driven by either the 35S or Yao promoter was used to edit the PthA4 effector binding elements in the promoter (EBEPthA4‐CsLOBP) of CsLOB1. A single crRNA was selected to target a conserved region of both Type I and Type II CsLOBPs, since the protospacer adjacent motif of LbCas12a (TTTV) allows crRNA to act on the conserved region of these two types of CsLOBP. CsLOB1 is the canker susceptibility gene, and it is induced by the corresponding pathogenicity factor PthA4 in Xanthomonas citri by binding to EBEPthA4‐CsLOBP. A total of seven 35S‐LbCas12a‐transformed Duncan plants were generated, and they were designated as #D35s1 to #D35s7, and ten Yao‐LbCas12a‐transformed Duncan plants were created and designated as #Dyao1 to #Dyao10. LbCas12a‐directed EBEPthA4‐CsLOBP modifications were observed in three 35S‐LbCas12a‐transformed Duncan plants (#D35s1, #D35s4 and #D35s7). However, no LbCas12a‐mediated indels were observed in the Yao‐LbCas12a‐transformed plants. Notably, transgenic line #D35s4, which contains the highest mutation rate, alleviates XccΔpthA4:dCsLOB1.4 infection. Finally, no potential off‐targets were observed. Therefore, CRISPR‐LbCas12a can readily be used as a powerful tool for citrus genome editing.  相似文献   
992.
Aging is an independent risk factor for vascular diseases. Perivascular adipose tissue (PVAT), an active component of the vasculature, contributes to vascular dysfunction during aging. Identification of underlying cell types and their changes during aging may provide meaningful insights regarding the clinical relevance of aging‐related vascular diseases. Here, we take advantage of single‐cell RNA sequence to characterize the resident stromal cells in the PVAT (PVASCs) and identified different clusters between young and aged PVASCs. Bioinformatics analysis revealed decreased endothelial and brown adipogenic differentiation capacities of PVASCs during aging, which contributed to neointimal hyperplasia after perivascular delivery to ligated carotid arteries. Mechanistically, in vitro and in vivo studies both suggested that aging‐induced loss of peroxisome proliferator‐activated receptor‐γ coactivator‐1 α (PGC1α) was a key regulator of decreased brown adipogenic differentiation in senescent PVASCs. We further demonstrated the existence of human PVASCs (hPVASCs) and overexpression of PGC1α improved hPVASC delivery‐induced vascular remodeling. Our finding emphasizes that differentiation capacities of PVASCs alter during aging and loss of PGC1α in aged PVASCs contributes to vascular remodeling via decreased brown adipogenic differentiation.  相似文献   
993.
A knowledge of the total amount of heavy metals is not enough to assess the environmental impact of polluted soils. Therefore, the determination of Cu fractions in sediment is important to evaluate its behavior in the environment and its mobilization capacity. The distribution of Cu (II) fractions in the sediment was studied in a laboratory simulation experiment. The results indicated that the distribution of Cu fractions was related to the concentration of Cu in sediments. In the Suaeda heteroptera group, the content of exchangeable and carbonate-bound were reducing, while the Fe-Mn oxide- and organic matter-bound were basically raising. In the Nereis succinea group, the content of Fe-Mn oxide- and organic matter-bound were from raising to reducing, and the residual was basically reducing with the increasing Cu concentrations. Generally speaking, the existence of N. succinea could enhance the uptake of Cu in the coastal sediment planted with S. heteroptera. When S. heteroptera and N. succinea in combination, effect of S. heteroptera and N. succinea on Cu fractions in sediments was significantly higher than the two working singly.  相似文献   
994.
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis.  相似文献   
995.
Three PBDEs (BDE25, BDE47, and BDE154) were selected to investigate the interactions between PBDEs and hen egg white lysozyme (HEWL) by molecular modeling, fluorescence spectroscopy, and FT‐IR spectra. The docking results showed that hydrogen bonds were formed between BDE25 and residue TRP63 and between BDE47 and TRP63 with bond lengths of 2.178 Å and 2.146 Å, respectively. The molecular dynamics simulations indicated that van der Waals forces played a predominant role in the binding of three PBDEs to HEWL. The observed fluorescence quenching can be attributed to the formation of complexes between HEWL and PBDEs, and the quenching mechanism is a static quenching. According to Förster's non‐radiative energy transfer theory, the binding distances r were < 7 nm, indicating a high probability of energy transfer from HEWL to the three PBDEs. The synchronous fluorescence showed that the emission maximum wavelength of tryptophan (TRP) residues emerged a red‐shift. FT‐IR spectra indicated that BDE25, BDE47 and BDE154 induced the α‐helix percentage of HEWL decreased from 32.70% ± 1.64% to 28.27% ± 1.41%, 27.50% ± 1.38% and 29.78% ± 1.49%, respectively, whereas the percentage of random coil increased from 26.67% ± 1.33% to 27.60% ± 1.38%, 29.18% ± 1.46% and 30.59% ± 1.53%, respectively.  相似文献   
996.
997.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   
998.
999.
1000.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm?2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm?2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号